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PREFACE.

THE original design of the Authors in commencing this work

about twenty years ago has not been carried out beyond the

production of the first of a series of volumes, in which it was

intended that the various branches of mathematical and experi

mental physics should be successively treated. The intention

of proceeding with the other volumes . is now definitely aban

doned; but much new matter has been added to the first

volume, and it has been divided into two parts, in the second

edition now completed in this second part. The original first

volume contained many references to the intended future

volumes
;
and these references have been allowed to remain in

the present completion of the new edition of the first volume,

because the plan of treatment followed depended on the

expectation of carrying out the original design.

Throughout the latter part of the book extensive use has,

according to Prof. Stokes revival of this valuable notation,

been made of the &quot;solidus&quot; to replace the horizontal stroke in

fractions
;
for example j-

is printed a/6. This notation is (as is

illustrated by the spacing between these lines) advantageous for

the introduction of isolated analytical expressions in the midst

of the text, and its use in printing complex fractional and

exponential expressions permits the printer to dispense with

much of the troublesome process known as
&quot;justification,&quot;

and

effects a considerable saving in space and expense.

781541



VI PREFACE.

An index to the whole of the first volume has been prepared

by Mr BURNSIDE, and is placed at the end.

A schedule is also given below of all the amendments and

additions (excepting purely verbal changes and corrections)

made in the present edition of the first volume.

Inspection of the schedules on pages xxii. to xxv. will shew

that much new matter has been imported into the present

edition, both in Part I. and Part II. These additions are

indicated by the word &quot;new.&quot;

The most important part of the labour of editing Part II.

has been borne by Mr G. H. DARWIN, and it will be seen from

the schedule below that he has made valuable contributions to

the work.

NOTE TO NEW IMPRESSION, 1912

A few slight additions and corrections have been made by

Sir GEORGE DARWIN and Prof. H. LAMB, but, substantially, the

work remains as last passed by the authors. The additions can

be identified by the initials attached in brackets.
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DIVISION II

ABSTRACT DYNAMICS.

CHAPTER V.

INTRODUCTORY.

438. UNTIL we know thoroughly the nature of matter and Approxi-

the forces which produce its motions, it will be utterly im- ment of

physical

possible to submit to mathematical reasoning the exact con- questions,

ditions of any physical question. It has been long understood,

however, that approximate solutions of problems in the ordinary

branches of Natural Philosophy may be obtained by a species

of abstraction, or rather limitation of the data, such as enables

us easily to solve the modified form of the question, while we

are well assured that the circumstances (so modified) affect the

result only in a superficial manner.

439. Take, for instance, the very simple case of a crowbar

employed to move a heavy mass. The accurate mathematical

investigation of the action would involve the simultaneous

treatment of the motions of every part of bar, fulcrum, and

mass raised
;
but our ignorance of the nature of matter and

molecular forces, precludes any such complete treatment of the

problem.
It is a result of observation that the particles of the bar,

fulcrum, and mass, separately, retain throughout the process

nearly the same relative positions. Hence the idea of solving,

VOL. li. 1
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Approxi- instead of the complete but infinitely transcendent problem,mate treat- .

x

m
h
n
sicai

ancther, Jn reality quite different, but which, while amply simple,
questions, obviously leads to practically the same results so far as con-

:\
, i^erns the equilibrium and motions of the bodies as a whole.

440. The new form is given at once by the experimental
result of the trial. Imagine the masses involved to be perfectly

rigid, that is, incapable of changing form or dimensions. Then
the infinite series of forces, really acting, may be left out of

consideration
;

so that the mathematical investigation deals

with a finite (and generally small) number of forces instead of

a practically infinite number. Our warrant for such a substi

tution is to be established thus.

441. The effects of the intermodular forces could be ex

hibited only in alterations of the form or volume of the masses

involved. But as these (practically) remain almost unchanged,
the forces which produce, or tend to produce, them may be left

out of consideration. Thus we are enabled to investigate the

action of machinery supposed to consist of separate portions
whose form and dimensions are unalterable.

Further 442. If we go a little further into the question, we find that
approxima- 1177
turns. the lever bends, some parts of it are extended and others com

pressed. This would lead us into a very serious and difficult

inquiry if we had to take account of the whole circumstances.

But (by experience) we find that a sufficiently accurate solution

of this more formidable case of the problem may be obtained

by supposing (what can never be realized in practice) the mass

to be homogeneous, and the forces consequent on a dilatation,

compression, or distortion, to be proportional in magnitude, and

opposed in direction, to these deformations respectively. By
this further assumption, close approximations may be made to

the vibrations of rods, plates, etc., as well as to the statical

effect of springs, etc.

443. We may pursue the process further. Compression, in

general, produces heat, and extension, cold. The elastic forces

of the material are thus rendered sensibly different from what

they would be with the same changes of bulk and shape, but
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with no change of temperature. By introducing such considera- Further

tions, we reach, without great difficulty, what may be called tns?
xlr

a third approximation to the solution of the physical problem
considered.

444. We might next introduce the conduction of the heat,

so produced, from point to point of the solid, with its accom

panying modifications of elasticity, and so on; and we might
then consider the production of thermo-electric currents, which

(as we shall see) are always developed by unequal heating in

a mass if it be not perfectly homogeneous. Enough, however,

has been said to show,yrs, our utter ignorance as to the true

and complete solution of any physical question by the only

perfect method, that of the consideration of the circumstances

which affect the motion of every portion, separately, of each

body concerned
; and, second, the practically sufficient manner

in which practical questions may be attacked by limiting their

generality, the limitations introduced being themselves deduced

from experience, and being therefore Nature s own solution (to

a less or greater degree of accuracy) of the infinite additional

number of equations by which we should otherwise have been

encumbered.

445. To take another case : in the consideration of the pro

pagation of waves at the surface of a fluid, it is impossible,

not only on account of mathematical difficulties, but on account

of our ignorance of what matter is, and what forces its particles

exert on each other, to form the equations which would give

us the separate motion of each. Our first approximation to

a solution, and one sufficient for most practical purposes, is de

rived from the consideration of the motion of a homogeneous,

incompressible, and perfectly plastic mass
;
a hypothetical sub

stance which may have no existence in nature.

446. Looking a little more closely, we find that the actual

motion differs considerably from that given by the analytical

solution of the restricted problem, and we introduce further

considerations, such as the compressibility of fluids, their inter

nal friction, the heat generated by the latter, and its effects in

dilating the mass, etc. etc. By such successive corrections we

12
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Further attain, at length, to a mathematical result which (at all events
approxima- . _ . , . .

tions. in the present state oi experimental science) agrees, within the

limits of experimental error, with observation.

447. It would be easy to give many more instances sub

stantiating what has just been advanced, but it seems scarcely

necessary to do so. We may therefore at once say that there

is no question in physical science which can be completely and

accurately investigated by mathematical reasoning, but that

there are different degrees of approximation, involving assump
tions more and more nearly coincident with observation, which

may be arrived at in the solution of any particular question.

object of 448. The object of the present division of this volume is to deal

dfviSonof
6

with the first and second of these approximations. In it we shall

suppose all solids either RIGID, i.e., unchangeable in form and

volume, or ELASTIC
;
but in the latter case, we shall assume the

law, connecting a compression or a distortion with the force

which causes it, to have a particular form deduced from experi

ment. And we shall in the latter case neglect the thermal or

electric effects which compression or distortion generally cause.

We shall also suppose fluids, whether liquids or gases, to be

either INCOMPRESSIBLE or compressible according to certain

known laws
;
and we shall omit considerations of fluid friction,

although we admit the consideration of friction between solids.

Fluids will therefore be supposed perfect, i.e., such that any par

ticle may be moved amongst the others by the slightest force.

449. When we come to Properties of Matter and the various

forms of Energy, we shall give in detail, as far as they are yet

known, the modifications which further approximations have

introduced into the previous results.

Laws of 450. The laws of friction between solids were very ably in

vestigated by Coulomb
; and, as we shall require them in the

succeeding chapters, we give a brief summary of them here
;

reserving the more careful scrutiny of experimental results to

our chapter on Properties of Matter.

451. To produce and to maintain sliding of one solid body

on another requires a tangential force which depends (1) upon
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the nature of the bodies; (2) upon their polish, or the species and Laws of

quantity of lubricant which may have been applied ; (3) upon the

normal pressure between them, to which it is in general directly

proportional. It does not (except in some extreme cases where

scratching or excessive abrasion takes place) depend sensibly

upon the area of the surfaces in contact. When two bodies are

pressed together without being caused to slide one on another,

the force which prevents sliding is called Statical Friction. It

is capable of opposing a tangential resistance to motion which

may be of any amount less than or at most equal to pR ;
where

R is the whole normal pressure between the bodies
;
and

/j,

(which depends mainly upon the nature of the surfaces in

contact) is what is commonly called the coefficient of Statical

Friction. This coefficient varies greatly with the circumstances,

being in some cases as low as 0*03, in others as high as 80.

Later, we shall give a table of its values. When the applied

forces are insufficient to produce motion, the whole amount of

statical friction is not called into play ;
its amount then just

reaches what is sufficient to equilibrate the other forces, and

its direction is the opposite of that in which their resultant

tends to produce motion.

452. When the statical friction has been overcome, and

sliding is produced, experiment shows that a force of friction

continues to act, opposing the motion; that this force of Kinetic

Friction is in most cases considerably less than the extreme

force of static friction which had to be overcome before the

sliding commenced ;
that it too is sensibly proportional to the

normal pressure ;
and that it is approximately the same what

ever be the velocity of the sliding.

453. In the following Chapters on Abstract Dynamics we con-

fine ourselves mainly to the general principles, and the fundamen-

tal formulas and equations of the mathematics of this extensive turns,

subject; and, neither seeking nor avoiding mathematical exer-

citations, we enter on special problems solely with a view to pos

sible usefulness for physical science, whether in the way of the

material of experimental investigation, or for illustrating physical

principles, or for aiding in speculations of Natural Philosophy.



CHAPTER VI.

STATICS OF A PARTICLE. ATTRACTION.

454- WE naturally divide Statics into two parts the equi
librium of a particle, and that of a rigid or elastic body or

system of particles whether solid or fluid. In a very few sec

tions we shall dispose of the first of these parts, and the rest of

this chapter will be devoted to a digression on the important

subject of Attraction.

ofequiu-
ns

455&amp;gt; ^ 255 f rces acting at the same point, or on the

bnum^ofa
same material particle, are to be compounded by the same laws

as velocities. Hence, evidently, the sum of their components
in any direction must vanish if there is equilibrium ;

and there

is equilibrium if the sums of the components in each of three

lines not in one plane are each zero. And thence the necessary

and sufficient mathematical equations of equilibrium.

Thus, for the equilibrium of a material particle, it is necessary,

and sufficient, that the (algebraic) sums of the components of

the applied forces, resolved in any three rectangular directions,

should vanish.

Equili- If P be one of the forces, I, m, n its direction-cosines, we
brium of a
particle. nave

&quot;ZIP
-

0, 2mP =
0, 2nP = 0.

If there be not equilibrium, suppose R, with direction-cosines

X, /z, v, to be the resultant force. If reversed in direction, it

will, with the other forces, produce equilibrium. Hence
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And R* - (ZIP}
2 + (2mP)

2 + (2nP)
2

, Equiii-
briutn of *

A
fji

v particle

456. We may take one or two particular cases as examples
of the general results above. Thus,

(1) If the particle rest on a frictionless curve, the com

ponent force along the curve must vanish.

If x, y, z be the co-ordinates of the point of the curve at which

the particle rests, we have evidently

dx dy dz\-r + m-/- + n-j-]= 0.
as as as/

When P, I, m, n are given in terms of x, y, z, this, with the two

equations to the curve, determines the position of equilibrum.

(2) If the curve be frictional, the resultant force along it

must be balanced by the friction.

If F be the friction, the condition is

ds ds ds

This gives the amount of friction which will be called into play ;

and equilibrium will subsist until, as a limit, the friction is
//.
times

the normal pressure on the curve. But the normal pressure is

(/ dz dy\
2

/ dx ,dz\
2

f.dy dx\ 2

}%2P \lm-r--n ~) + (n-j-- I-;-) + (I-/ -m-j-) \
.

\\ ds ds) \ ds ds) \ ds ds) J

Hence, the limiting positions, between which equilibrium is pos

sible, are given by the two equations to the curve, combined with

/ dx dy dz\ _ ( ( dz dyY ( dx
7
dA 2 / jdy dx\*n

2P( Z-r +m-/ + n-r )yu2P&amp;lt;(??i -n-f- } + \nr -l-^-} + (l-^-m -=-
) \

=0.
\ ds ds dsj (\ ds ds J \ ds ds J \ ds ds/ )

(3) If the particle rest on a smooth surface, the resultant

of the applied forces must evidently be perpendicular to the

surface.

If
&amp;lt;(#, y, z)

= be the equation of the surface, we must there-

lore have

d&amp;lt;j&amp;gt; d&amp;lt;f&amp;gt; d(j&amp;gt;

~dx d dz

and these three equations determine the position of equilibrium.
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particle.

W ^ ^ res^ on a rollgh surface, friction will be called into

play, resisting motion along the surface
;
and there will be

equilibrium at any point within a certain boundary, determined

by the condition that at it the friction is
/u,

times the normal

pressure on the surface, while within it the friction bears a less

ratio to the normal pressure. When the only applied force is

gravity, we have a very simple result, which is often practically

useful. Let 6 be the angle between the normal to the surface

and the vertical at any point ;
the normal pressure on the sur

face is evidently W cos0, where W is the weight of the particle;

and the resolved part of the weight parallel to the surface,

which must of course be balanced by the friction, is W siuO.

In the limiting position, when sliding is just about to com

mence, the greatest possible amount of statical friction is called

into play, and we have

or tan 6 = .

Angle of The value of thus found is called the Angle of Repose.

Let
&amp;lt;/&amp;gt; (x, y, 3)

= be the surface : P, with direction-cosines

I, m, n, the resultant of the applied forces. The normal pressure is

. dd&amp;gt; d(h dd&amp;gt;

I -r- + m - + n~
dx dy dz

//d*y /d*y MA*
V \dx) +\dy)

+
(dz)

The resolved part of P parallel to the surface is

m -= n -7- )
-f

(
n -; I -r-

)
+ \ v //&

rfa; dy J \ dx dzj \ dy dx

dx dz

Hence^ for the boundary of the portion of the surface within

which equilibrium is possible, we have the additional equation

dz dy dx dx dz

Attraction. 457. A most important case of the composition of forces

acting at one point is furnished by the consideration of the

attraction of a body of any form upon a material particle any-
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where situated. Experiment has shown that the attraction Attraction,

exerted by any portion of matter upon another is not modified

by the proximity, or even by the interposition, of other

matter
;
and thus the attraction of a body on a particle is the

resultant of the attractions exerted by its several parts. To
treatises on applied mathematics we must refer for the examina

tion of the consequences, often very curious, of various laws of

attraction; but, dealing with Natural Philosophy, we confine

ourselves mainly, (and except where we give the mathematics of

Laplace s beautiful and instructive and physically important,

though unreal, theory of capillary attraction,) to the law of the

inverse square of the distance which Newton discovered for gra
vitation. This, indeed, furnishes us with an ample supply
of most interesting as well as useful results.

458. The law, which (as a property of matter) is to be care- Universal

fully considered in the next proposed Division of this Treatise, attraction,

may be thus enunciated.

Every particle of matter in the universe attracts every other

particle, with a force whose direction is that of the line joining
the two, and whose magnitude is directly as the product of their

masses, and inversely as the square of their distance from each

other.

Experiment shows (as will be seen further on) that the same
law holds for electric and magnetic attractions under properly
defined conditions.

459. For the special applications of Statical principles to Special unit

which we proceed, it will be convenient to use a special unit of of matter?

mass, or quantity of matter, and corresponding units for the

measurement of electricity and magnetism.

Thus if, in accordance with the physical law enunciated in

458, we take as the expression for the forces exerted on each

other by masses M and m, at distance D,

Mm
17

it is obvious that our unit force is the mutual attraction of two
units of mass placed at unit of distance from each other.
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surface and
^ ^ *s convenient f r niany applications to speak of the

densities density of a distribution of matter, electricity, etc., along a line,

over a surface, or through a volume.

Here line-density = quantity of matter per unit of length,

surface-density = ,,
area,

volume-density = ,, ,, ,,
volume.

Electricand
magnetic
reckonings
of quantity.

Positive and
negative

mitted in
abstract

theory of
attraction.

Uniform
spherical
shell. At
traction on
internal

point.

461. In applying the succeeding investigations to electricity

or magnetism, it is only necessary to premise thatM and in stand

for quantities of free electricity or magnetism, whatever these

may be, and that here the idea of mass as depending on inertia

is not necessarily involved. The formula
-y^-

will still repre

sent the mutual action, if we take as unit of imaginary electric

or magnetic matter, such a quantity as exerts unit force on an

equal quantity at unit distance. Here, however, one or both

of M, m may be negative ; and, as in these applications like

kinds repel each other, the mutual action will be attraction

or repulsion, according as its sign is negative or positive. With

these provisos, the following theory is applicable to any of the

above-mentioned classes of forces. We commence with a few

simple cases which can be completely treated by means of ele

mentary geometry.

462. If the different points of a spherical surface attract

equally with forces varying inversely as the squares of the dis

tances, a particle placed within the surface is not attracted in any

direction.

Let HIKL be the spherical surface, and P the particle

within it. Let two lines HK, IL, intercepting very small arcs

HI, KL, be drawn through P; then,

on account of the similar triangles

HPI, KPL, those arcs will be propor-

tional to the distances HP, LP
;
and

any small elements of the spherical

surface at HI and KL, each bounded

all round by straight lines passing

through P [and very nearly coincid

ing with HK], will be in the duplicate ratio of those lines.
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Hence the forces exercised by the matter of these elemerits Uniform
*

. _ spherical

on the particle P are equal ;
for they are as the quantities j

he11
-.

At -

of matter directly, and the squares of the distances, inversely ;

and these two ratios compounded give that of equality.

The attractions therefore, being equal and opposite, balance one

another : and a similar proof shows that the attractions due to

all parts of the whole spherical surface are balanced by contrary

attractions. Hence the particle P is not urged in any direc

tion by these attractions.

463. The division of a spherical surface into infinitely small Digression
, . . on the divi-

elements will frequently occur in the investigations which sion of sur-
-1 ... faces into

follow : and Newton s method, described in the preceding de- elements.

monstration, in which the division is effected in such a manner

that all the parts may be taken together in pairs of opposite

elements with reference to an internal point; besides other

methods deduced from it, suitable to the special problems to be

examined
;
will be repeatedly employed. The present digres

sion, in which some definitions and elementary geometrical

propositions regarding this subject are laid down, will simplify

the subsequent demonstrations, both by enabling us, through
the use of convenient terms, to avoid circumlocution, and by

affording us convenient means of reference for elementary

principles, regarding which repeated explanations might other

wise be necessary.

464. If a straight line which constantly passes through a Expiana-
, . A ,

&amp;gt;

, . ^1^1 -.
tionsand

fixed point be moved in any manner, it is said to describe, or definitions

generate, a conical surface of which the fixed point is the cones.

vertex.

If the generating line be carried from a given position con

tinuously through any series of positions, no two of which

coincide, till it is brought back to the first, the entire line on

the two sides of the fixed point will generate a complete conical

surface, consisting of two sheets, which are called vertical or

opposite cones. Thus the elements HI and KL, described in

Newton s demonstration given above, may be considered as being
cut from the spherical surface by two opposite cones having P
for their common vertex.
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The solid 466. If any number of spheres be described from the ver-
angleofa

*

cone, or of tex of a cone as centre, the segments cut from the concentric
a complete _

surface spherical surfaces will be similar, and their areas will be as the

squares of the radii. The quotient obtained by dividing the

area of one of these segments by the square of the radius of the

spherical surface from which it is cut, is taken as the measure

of the solid angle of the cone. The segments of the same

spherical surfaces made by the opposite cone, are respectively

equal and similar to the former (but
&quot;

perverted&quot;). Hence the

solid angles of two vertical or opposite cones are equal : either

may be taken as the solid angle of the complete conical surface,

of which the opposite cones are the two sheets.

Sum of ail 466. Since the area of a spherical surface is equal to the

angles

Id

square of its radius multiplied by 4?r, it follows that the sum of

point=4. the solid angles of all the distinct cones which can be described

with a given point as vertex, is equal to 4?r.

Sum of the 467. The solid angles of vertical or opposite cones being

o? all the
ks

equal, we may infer from what precedes that the sum of the

coScafsur- solid angles of all the complete conical surfaces which can be
s=2?r

described without mutual intersection, with a given point as

vertex, is equal to 2?r.

solid angle 468. The solid angle subtended at a point by a superficial

fit alpofnf area of any kind, is the solid angle of the cone generated by a

terminated straight line passing through the point, and carried entirely
ace

round the boundary of the area.

Orthogonal 469. A very small cone, that is, a cone such that any two

sSftionsof a positions of the generating line contain but a very small angle,
small cone. .

g^ to fee cut at right angle^ or orthogonally, by a spherical

surface described from its vertex as centre, or by any surface,

whether plane or curved, which touches the spherical surface at

the part where the cone is cut by it.

A very small cone is said to be cut obliquely, when the section

is inclined at any finite angle to an orthogonal section
;
and this

angle of inclination is called the obliquity of the section.

The area of an orthogonal section of a very small cone is equal
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to the area of an oblique section in the same position, multiplied Orthogonal....,..-.. and oblique

by the cosine ot the obliquity. sections of a

Hence the area of an oblique section of a small cone is equal

to the quotient obtained by dividing the product of the square
of its distance from the vertex, into the solid angle, by the

cosine of the obliquity.

470. Let E denote the area of a very small element of a Area of stg-
, -r-, -, ment cut

spherical surface at the point E (that is to say, an element from spiu-r-
ical surface

every part of which is very near the point jb), let o&amp;gt; denote by small

the solid angle subtended by E at any point P, and let PE.

produced if necessary, meet the surface again in E : then, a

denoting the radius of the spherical surface, we have

2a . &) . PE2

EE
For, the obliquity of the element E, considered as a section

of the cone of which P is the vertex and

the element E a section
; being the angle

between the given spherical surface and

another described from P as centre, with

PE as radius
;

is equal to the angle be

tween the radii, EP and EG, of the two

spheres. Hence, by considering the iso

sceles triangle ECE ,
we find that the cosine of the obliquity

\EE EE
is equal to T- or to

&quot;9

&amp;gt;

anc* we arrive at the preceding

expression for E.

471. The attraction of a uniform spherical surface on an uniform

external point is the same as if the whole mass were collected at sEeu&quot;

C

At.

,7 , * traction or;

the Centre*. external
point.

* This theorem, which is more comprehensive than that of Newton in his

first proposition regarding attraction on an external point (Prop. LXXL), is

fully established as a corollary to a subsequent proposition (Prop. LXXIII.

cor. 2). If we had considered the proportion of the forces exerted upon two

external points at different distances, instead of, as in the text, investigating

the absolute force on one point, and if besides we had taken together all the

pairs of elements which would constitute two narrow annular portions of the

surface, in planes perpendicular to PC, the theorem and its demonstration

would have coincided precisely with Prop. LXXI. of the Pnncipia.
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Let P be the external point, C the centre of the sphere, and

CAP a straight line cutting

the spherical surface in A.

Take / in CP, so that CP,

CA, (7Jmay be continual pro

portionals, and let the whole

spherical surface be divided

into pairs of opposite elements

with reference to the point I.

Let H and H denote the magnitudes of a pair of such

elements, situated respectively at the extremities of a chord

HH
-,

and let o&amp;gt; denote the magnitude of the solid angle sub

tended by either of these elements at the point /.

We have ( 469),

(OH=^^, andtf =.cos CHI

Hence, if p denote the density of the surface, the attractions of

the two elements H and H on P are respectively

p
cosCHI ~PIP P cosCH I PH&quot;&amp;lt;

Now the two triangles PCH, HCI have a common angle at C.

and, since PC : CH : : CH : CI, the sides about this angle are

proportional. Hence the triangles are similar; so that the

angles CPH and CHI are equal, and

IH__CH _ a

~HP~ CP~ CP

In the same way it may be proved, by considering the triangles

PCH ,
H CI, that the angles CPH and CH I are equal, and

that

H P CP CP

Hence the expressions for the attractions of the elements H
and H on P become

co a? .. ft) ft

p cosCHI ~CF2&amp;gt; p ^os~CHI CP*

v/hich are equal, since the triangle HCH is isosceles ; and, for
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the same reason, the angles CPU, CPH
, which have been uniform

proved to be respectively equal to the angles CHI, CH I, are

equal. We infer that the resultant of the forces due to the

two elements is in the direction PC, and is equal to

To find the total force on P, we must take the sum of all the

forces along PC due to the pairs of opposite elements; and,
since the multiplier of o&amp;gt; is the same for each pair, we must
add all the values of

o&amp;gt;,

and we therefore obtain
( 467), for the

required resultant,

4f7rpci

The numerator of this expression ; being the product of the

density, into the area of the spherical surface
;

is equal to the
whole mass

;
and therefore the force on P is the same as if the

whole mass were collected at C.

Cor. The force on an external point, infinitely near the surface,
is equal to 47rp, and is in the direction of a normal at the point.
The force on an internal point, however near the surface, is, by a

preceding proposition, nil.

472. Let a be the area of an infinitely small element of the Attraction

surface at any point P, and at any other

point H of the surface let a small element ^^^ surface

subtending a solid angle w, at P, be taken.

The area of this element will be equal to

a&amp;gt;.PH
z

\ d~ ~^P
cos CHP

and therefore the attraction along HP,
which it exerts on the element a at P, will

be equal to

pa) . pa-

cos CHP r

Now the total attraction on the element at P is in the direction

CP
;
the component in this direction of the attraction due to

the element H, is
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Attraction and, since all the cones corresponding to the different elements

n?entoYthe of the spherical surface lie on the same side of the tangent

plane at P, we deduce, for the resultant attraction on the

element cr,

From the corollary to the preceding proposition, it follows that

this attraction is half the force which would be exerted on an

external point, possessing the same quantity of matter as the

element cr, and placed infinitely near the surface.

473. In some of the most important elementary problems

of the theory of electricity, spherical surfaces with densities

varying inversely as the cubes of distances from eccentric points

occur : and it is of fundamental importance to find the attrac

tion of such a shell on an internal or external point. This may
be done synthetically as follows

;
the investigation being, as we

shall see below, virtually the same as that of 462, or 471.

Attraction 474. Let us first consider the case in which the given point

spherical S and the attracted point P are separated by the spherical sur-

whichthe face. The two figures represent the varieties of this case in

varies m- which, the point 8 being without the sphere, P is within
; and,

the cube of S being within, the attracted point is external. The same de-
the distance r
from a given monstration is applicable literally with reference to the two

figures; but, to avoid the consideration of negative quan

tities, some of the expressions may be conveniently modified to

suit the second figure. In such instances the two expressions

are given in a double line, the upper being that which is most

convenient for the first figure, and the lower for the second.

Let the radius of the sphere be denoted by a, and let / be

the distance of S from C, the centre of the sphere (not repre

sented in the figures).

Join SP and take T in this line (or its continuation) so that

(fig. 1) SP.ST=f-a\
(fig. 2) SP.TS = d2

-/*.

Through T draw any line cutting the spherical surface at K, K\

Join SK, SK
,
and let the lines so drawn cut the spherical

surface again in E, E .
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Let the whole spherical surface be divided into pairs of Attraction

opposite elements with reference to the point T, Let K and spherical

K be a pair of such elements situated at the extremities of the which the

chord KK , and subtending the solid angle &&amp;gt; at the point T
\
varies in-

and let elements E and E be taken subtending at S the same the cvbe of
the distance

solid angles respectively as the elements K and K . By this from a given

means we may divide the whole spherical surface into pairs of

conjugate elements, E, E , since it is easily seen that when we
have taken every pair of elements, K, K , the whole surface

7T&quot;

will have been exhausted, without repetition, by the deduced

elements, E, E . Hence the attraction on P will be the

final resultant of the attractions of all the pairs of elements,

jg* jr.

Now if p be the surface density at E, and if F denote the

attraction of the element E on P, we have

EP*

According to. the given law of density we shall have

X

where X is a constant. Again, since SEK is equally inclined

to the spherical surface at the two points of intersection, we

have

and hence

VOL. II.

~

. TK_
SE 3 SK2 KK TK

. o&amp;gt;.

2
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Attraction Now, by considering the great circle in which the sphere is cut

spherical by a plane through the line SK, we find that
surface of

* (fig. 2) KS . SE = a? -/ ,

the cube of

thedi^tance
an(} hence SK . SE = SP . ST, from which we infer that the tri-

P

r

oint
ag 3n

angles KST, P8E are similar; so that TK : SK :: PE : SP.

TK* J^
SK*.PE*~SP*

and the expression for F becomes

,
r SE.SP*

Modifying this by preceding expressions we have

(fig. 2)F=\.

Similarly, if F denote the attraction of E on P, we have

f)n

(fig. l)F = \

Now in the triangles which have been shown to be similar, the

angles TKS, EPS are equal ;
and the same may be proved of

the angles TK S, E PS. Hence the two sides SK, SK of the

triangle KSK are inclined to the third at the same angles

as those between the line PS and directions PE, PE of the two

forces on the point P; and the sides SK, SK are to one

another as the forces, Ft
F

,
in the directions PE, PE . It

follows, by &quot;the triangle of forces,&quot; that the resultant of F and

F is along PS, and that it bears to the component forces the

same ratios as the side KK of the triangle bears to the other

two sides. Hence the resultant force due to the two elements

E and E 1

on the point P, is towards S, and is equal to

la &) X . 2a . a)

KK (/
2 ~ a2

) . SP* (f ~ a2

) SP*



474.] STATICS. 19

The total resultant force will consequently be towards S
;
and

we find, by summation
( 467) for its magnitude,

X. 4-Tra

Hence we infer that the resultant force at any point P,

separated from S by the spherical surface, is the same as if a

quantity of matter equal to ^ ^ were concentrated at the

point 8.

475. To find the attraction when S and P are either both

without or both within the spherical surface.

Take in CS, or in CS produced through 8, a point $ , such

that CS.CS^a*.

Then, by a well-known geometrical theorem, if E be any point
on the spherical surface, we have

Attraction
of a
spherical
surface of
which the

density
varies in

versely as
the cube of
the distance
from a given
point.

Hence we have

Hence, p being the surface-density at E
y
we have

,JL .A.

Hence, by the investigation in the preceding section, the

attraction on Pis towards S
lt
and is the same as if a quantity

22
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Attraction X .

of a of matter equal to -~-
^ were concentrated at that point;

spherical //
~ a2

which the f bein^ taken to denote CS. . If for and \ we substitute
density

J l Ji i

varies in. a , \a , , ,. .

verseiyas their values, -7T and -^ ,
we have the modified expression

the cube of f f
3

the distance J J
from a given a
P int - X -

f
.

for the quantity of matter which we must conceive to be col

lected at $r

Uninsuiat- 476. If a spherical surface be electrified in such a way
that the electrical density varies inversely as the cube of the

aneiectric
f

distance from an internal point S, or from the corresponding

external point 8
lt

it will attract any external point, as if its

whole electricity were concentrated at S, and any internal point,

as if a quantity of electricity greater than its own in the ratio

of a to /were concentrated at S^.

Let the density at E be denoted, as before, by 8
. Then,

if we consider two opposite elements at E and E
,
which sub

tend a solid angle w at the point S, the areas of these

w .2aSE&quot; , to.2a.SE 19

... . ,

elements being and - r,- ,
the quantity 01 elec

tricity which they possess will be

\.2a.co f 1
TT^r +EE \SE SE J SE.SE&quot;

Now SE . SE is constant (Euc. ill. 35) and its value is a2

/*.

Hence, by summation, we find for the total quantity of elec

tricity on the spherical surface

Hence, if this be denoted by m, the expressions in the preced

ing paragraphs, for the quantities of electricity which we must

suppose to be concentrated at the point S or $
x , according as P

is without or within the spherical surface, become respectively

, a
m, and

-^m.
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477. The direct analytical solution of such problems con- Direct ana-

sists in the expression, by 455, of the three components of cuiationof

,
, , , . .

, -,
/. . . . . . attractions.

the whole attraction as the sums of its separate parts due to the

several particles of the attracting body ;
the transformation, by

the usual methods, of these sums into definite integrals; and the

evaluation of the latter. This is, in general, inferior in elegance
and simplicity to the less direct mode of solution depending

upon the determination of the potential energy of the attracted

particle with reference to the forces exerted upon it by the

attracting body, a method which we shall presently develop
with peculiar care, as being of incalculable value in the theories

of Electricity and Magnetism as well as in that of Gravitation.

But before we proceed to it, we give some instances of the

direct method, beginning with the case of a spherical shell.

(a) Let P be the attracted point, the centre of the shell.
Uniform^

Let any plane perpendicular to OP cut it in N
t
and the sphere

in the small circle QR.
Let QOP =

0, OQ = a,

OP = D. Then as the

whole attraction is evi

dently along PO, we

may at once resolve

the parts of it in that

direction. The circular

band corresponding to

0, + dO has for area

2-rra
2
sin OdO. Hence if J/be the mass of the shell, the component

attraction of the band on P, along PO, is

-sin OdO .
~

;
and PQ2 = a2 + D2 - 2aD cos 0.

Hence if PQ = x, xdx = aD sin OdO.

Also
- - - &quot; +/J

hence the attraction of the band is

H/f ~3 8
jxL ar Oi

W 2 ao^
dx.
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Uniform
spherical
shell.

Uniform
circular

disc, on

particle in
its axis.

Cylinder on
particle in

ABSTRACT DYNAMICS. [477.

This divides itself, on integration, into two cases,

(1) P external, i.e., D &amp;gt; a. Here the limits of x are D -a

and D + a. and the attraction is r-=^ = .

4Z)
2

\_a ax _\v- a D 3

before.

as

(2) P internal, i.e., D &amp;lt; a. Here the limits are a-D and

-0.
lUf 1

,y .-y*

a + D, and the attraction is -r-^
-

ax

(b) A useful case is that of the attraction of a circular plate
of uniform surface density on a point in a line through its centre,

and perpendicular to its plane.

If a be the radius of the plate, h the distance of the point from

it, and M its mass, the attraction (which is evidently in a direc

tion perpendicular to the plate) is easily seen to be

M f* 2hrdr _ 2Jf/ h \

a2

Jo (tf + r2

)*
a2

( JhT^
If p denote the surface density of the plate, this becomes

which, for an infinite plate, becomes

2wp.

From the preceding formula many useful results may easily

be deduced : thus,

(c) A uniform cylinder of length I, and diameter a, attracts

a point in its axis at a distance x from the nearest end with a

force

When the cylinder is of infinite length (in one direction) the

attraction is therefore

and, when the attracted particle is in contact with the centre of

the end of the infinite cylinder, this is
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(d) A right cone, of semivertical angle a, and length I, liightcone

attracts a particle at its vertex. Here we have at once for the at vertex.*

attraction, the expression

1t:pl(\ -COS a),

which is simply proportional to the length of the axis.

It is of course easy, when required, to find the necessarily less

simple expression for the attraction on any point of the axis.

(e)
For magnetic and electro-magnetic applications a very Positive

useful case is that of two equal discs, each perpendicular to the negative

line joining their centres, on any point in that line their masses

( 461) being of opposite sign that is, one repelling and the

other attracting.

Let a be the radius, p the mass of a superficial unit, of either,

G their distance, x the distance of the attracted point from the

nearest disc. The whole action is evidently

In the particular case when c is diminished without limit, this

becomes
*

27TOC-3.

(x
3 +

a&quot;)*

478. Let P and P be two points infinitely near one another variation of

on two sides of a surface over which matter is distributed
;
and crossing an

let p be the density of this distribution on the surface in the surface.

neighbourhood of these points. Then whatever be the resultant

attraction, H, at P, due to all the attracting matter, whether

lodging on this surface, or elsewhere, the resultant force, jR
,
on

P is the resultant of a force equal and parallel to R, and a

force equal to
k-rrp,

in the direction from P perpendicularly

towards the surface. For, suppose PF to be perpendicular to

the surface, which will not limit the generality of the pro

position, and consider a circular disc, of the surface, having its

centre in PP
t
and radius infinitely small in comparison with

the radii of curvature of the surface but infinitely great in com

parison with PP. This disc will
[ 477, (6)] attract P and P

with forces, each equal to ^irp and opposite to one another in

the line PP . Whence the proposition. It is one of much im

portance in the theory of electricity.
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Uniform
hemisphere
attracting
particle at

edge.

Alteration
of latitude ;

by hemi
spherical
hill or

cavity.

(a) As a further example of the direct analytical process, let

us find the components of the

attraction exerted by a uni

form hemisphere 011 a particle

at its edge. Let A be the

particle, AB a diameter of

the base, AC the tangent to

the base at A
;
and AD per

pendicular to AC, and AB.

Let RQA be a section by a

plane passing through AC ; AQ any radius-vector of this section
;

P a point in AQ. Let AP = r, CAQ =
0, RAB =

&amp;lt;. The volume

of an element at P is

rdO , r sin
Od&amp;lt;f&amp;gt;

. dr = r
2
sin OdfydOdr.

The resultant attraction on unit of matter at A has zero com

ponent along AC. Along AB the component is

p//J sin
Od(j&amp;gt;d&dr

cos sin 6,

between proper limits. The limits of r are and 2& sin 6 cos
&amp;lt;,

those of &amp;lt; are and -
,
and those of 6 are and TT. Hence,

2i

Attraction along AE ^irpa.

Along AD the component is

rnJo Jo Jo

.T f 2a sin 9 cos
&amp;lt;f&amp;gt;

sin
Qd6d&amp;lt;f&amp;gt;dr

sin &amp;lt; sin 6 =

(6) Hence at the southern base of a hemispherical hill of

radius a and density p, the true latitude (as measured by the

aid of the plumb-line, or by reflection of starlight in a trough of

mercury) is diminished by the attraction of the mountain by the

angle

G-pa
where G is the attraction of the earth, estimated in the same

units. Hence, if R be the radius and cr the mean density of the

earth, the angle is

,
or ^ ^-= approximately.

&quot;

&amp;lt;Ttl
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Hence the latitudes of stations at the base of the hill, north and

south of it. differ by ^ (
2 + -

) ;
instead of by

-w ,
as they would spherical

K \ &amp;lt;T/
Ji hill or

do if the hill were removed.

In the same way the latitude of a place at the southern edge

of a hemispherical cavity is increased on account of the cavity

by J
E^. where p is the density of the superficial strata.

(c)
For mutual attraction between two segments of a homo

geneous solid sphere, investigated indirectly on a hydrostatic

principle, see 753 below.

479. As a curious additional example of the class of ques-
by crevasse,

tions considered in 478 (a) (6), a deep crevasse, extending east

and west, increases the latitude of places at its southern edge

by (approximately) the angle f -^ where p is the density of

the crust of the earth, and a is the width of the crevasse. Thus

the north edge of the crevasse will have a lower latitude than

the south edge if f
-

&amp;gt; 1, which might be the case, as there

are rocks of density f x 5 5 or 3 67 times that of water. At a

considerable depth in tbe crevasse, this change of latitudes is

nearly doubled, and then the southern side has the greater

latitude if the density of the crust be not less than T83 times

that of water. The reader may exercise himself by drawing

lines of equal latitude in the neighbourhood of the crevasse in

this case : and by drawing meridians for the corresponding case

of a crevasse running north and south.

480. It is interesting, and will be useful later, to consider Attraction
. of a sphere

as a particular case, the attraction of a sphere whose mass is composed of
r &amp;gt; r concentric

composed of concentric layers, each of uniform density. uniform

Let R be the radius, r that of any layer, p = F(r) its density, density.

Then, if a- be the mean density,

fTTo-72
3 = 47r [ fa*dr,

Jo

from which tr may be found.

The surface attraction is firvR, = G, suppose.

At a distance r from the centre the attraction is - I pr*dr.
r Jo
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If it is to be the same for all points inside the sphere

-|
ri

Hence p = F (r)
= ~- . is the requisite law of density.

If the density of the upper crust be T, the attraction at a

depth h, small compared with the radius, is

ft**,

where cr
l
is the mean density of nucleus when a shell of thick

ness h is removed from the sphere. Also, evidently,

j7r(T1 (R
-

k)
3 + 47TT (R

-
h)

2h = | TTCTlt
3

,

or Gl (R
-

h) + vr (R
- Kfh = GR

3

,

whence G l
= G (l +

-gJ
- ^TrrA.

The attraction is therefore unaltered at a depth h if

R
= iTrtr

Attraction
of a uniform
circular arc,

481. Some other simple cases may be added here, as their

results will be of use to us subsequently.

(a) The attraction of a circular arc, AB, of uniform density,

on a particle at the centre, C, of the

circle, lies evidently in the line CD

bisecting the arc. Also the resolved

part parallel to CD of the attraction

of an element at P is

mass of element at P PCD
CD*

Now suppose the density of the chord AB

to be the same as that of the arc. Then

for (mass of element at P x cos PCD)
we may put mass of projection of element

on AB at Q ; since, if PT be the tangent at P, PTQ = PCD.

Sum of projected elements

Hence attraction along CD =

_ PAB~
CD&quot;
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if p be the density of the given arc, Attraction
of a uniform

&amp;lt;
circular arc,

_ 2p sin ACD
CD

It is therefore the same as the attraction of a mass equal to the

chord, with the arc s density, concentrated at the point D.

(b) Again a limited straight line of uniform density attracts straight

any external point in the same direction and with the same

force as the corre

sponding arc of a

circle of the same

density, which has

the point for cen

tre, and touches the

straight line.

For if CpP be A~ ~~P~ B D
drawn cutting the circle in p and the line in P

;
Element at

rip
p : element at P :: Cp : CP^ ;

that is, as Cp
2

: CP2
. Hence

the attractions of these elements on C are equal and in the same

line. Thus the arc ab attracts C as the line AB does; and, by
the last proposition, the attraction of AB bisects the angle ACS,
and is equal to

(c)
This may

be put into other

useful forms

thus, let CKF
bisect the angle

AGE, and let

Aa, b, EF, be

drawn perpen
-

j

dicular to GF
from the ends

and middle point

of AB. We

have sn
KB .

&amp;lt; AB
CB*

mGKI) =
ACTC

B

CD
CK
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Attraction
of a uniform
straight
line.

Hence the attraction, which is along CK, is

(AC + CB) CK
=
8 (AC + CB) (IZ7T CB* -Aff)

F 0)

For, evidently,

bK : Ka :: BK : KA :: BC : CA :: bC : Co,

i.e., ab is divided, externally in (7, and internally in K, in the

same ratio. Hence, by geometry,

KC . CF= aC . Cb = I {AC+CB
2 - AB2

},

which gives the transformation in
(1).

(d) CF is obviously the tangent at C to a hyperbola, passing

through that point, and having A and B as foci. Hence, if in

any plane through AB any hyperbola be described, with foci A
and B, it will be a line of force as regards the attraction of the

line AB
; that is, as will be more fully explained later, a curve

which at every point indicates the direction of attraction.

(e) Similarly, if a prolate spheroid be described with foci A
and B, and passing through (7, CF will evidently be the normal
at C

;
thus the force on a particle at C will be perpendicular to

the spheroid; and the particle would evidently rest in equilibrium
on the surface, even if it were smooth. This is an instance of

(what we shall presently develop at some length) a surface of

equilibrium, a level surface, or an equipotential surface.

(f) We may further prove, by a simple application of the

preceding theorem, that the lines of force due to the attraction

of two infinitely long rods in the line AB produced, one of which

is attractive and the other repulsive, are the series of ellipses

described from the extremities, A and B, as foci, while the

surfaces of equilibrium are generated by the revolution of the

confocal hyperbolas.

Potential. 482. As of immense importance, in tbe theory not only of

gravitation but of electricity, of magnetism, of fluid motion, of

the conduction of heat, etc., we give here an investigation of the

most important properties of the Potential.

483. This function was introduced for gravitation by Laplace,

but the name was first given to it by Green, who may almost

be said to have in 1828 created the theory, as we now have it.
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Green s work was neglected till 1846, and before that time most Potential

of its important theorems had been re-discovered by Gauss,

Chasles, Sturm, and Thomson.

In 273, the potential energy of a conservative system in any

configuration was defined. When the forces concerned are

forces acting, either really or apparently, at a distance, as

attraction of gravitation, or attractions or repulsions of electric

or magnetic origin, it is in general most convenient to choose,

for the zero configuration, infinite distance between the bodies

concerned. We have thus the following definition :

484. The mutual potential energy of two bodies in any
relative position is the amount of work obtainable from their

mutual repulsion, by allowing them to separate to an infinite

distance asunder. When the bodies attract mutually, as for

instance when no other force than gravitation is operative, their

mutual potential energy, according to the convention for zero

now adopted, is negative, or
( 547 below) their exhaustion of

potential energy is positive.

485. The Potential at any point, due to any attracting or

repelling body, or distribution of matter, is the mutual potential

energy between it and a unit of matter placed at that point.

But in the case of gravitation, to avoid defining the potential

as a negative quantity, it is convenient to change the sign.

Thus the gravitation potential, at any point, due to any mass,

is the quantity of work required to remove a unit of matter

from that point to an infinite distance.

486. Hence if V be the potential at any point P, and V
l

that at a proximate point Q, it evidently follows from the above

definition that V V
1

is the work required to remove an inde

pendent unit of matter from P to Q ;
and it is useful to note

that this is altogether independent of the form of the path
chosen between these two points, as it gives us a preliminary
idea of the power we acquire by the introduction of this mode

of representation.

Suppose Q to be so near to P that the attractive forces

exerted on unit of matter at these points, and therefore at any
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Potential, point in the line PQ, may be assumed to be equal and parallel.

Then if F represent the resolved part of this force along PQ,
F . PQ is the work required to transfer unit of matter from P
to Q. Hence

V-V^F.PQ,
V VF -
pf&amp;gt;

Force in that is, the attraction on unit of matter at P in any direction

potential?

16

PQ, is the rate at which the potential at P increases per unit

of length of P ft

Equipoten- 487. A surface, at every point of which the potential has the
tmi surface.

same va}u6j an(j wbich is therefore called an Equipotential Sur

face, is such that the attraction is everywhere in the direction

of its normal. For in no direction along the surface does the

potential change in value, and therefore there is no force in

any such direction. Hence if the attracted particle be placed

on such a surface (supposed smooth and rigid), it will rest in

any position, and the surface is therefore sometimes called a

Surface of Equilibrium. We shall see later, that the force

on a particle of a liquid at the free surface is always in the

direction of the normal, hence the term Level Surface, which

is often used for the other terms above.

Relative in- 488. If a series of equipotential surfaces be constructed for

values of the potential increasing by equal small amounts, it is

evident from 486 that the attraction at any point is inversely

proportional to the normal distance between two successive
surface.

Slirfaces close to that point ;
since the numerator of the ex

pression for F is, in this case, constant. *

Line of 489. A line drawn from any origin, so that at every point of

its length its tangent is the direction of the attraction at that

point, is called a Line of Force ; and it obviously cuts at right

angles every equipotential surface which it meets.

These three last sections are true whatever be the law of

attraction ;
in the next we are restricted to the law of the

inverse square of the distance.
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490. If, through every point of the boundary of an infinitely Variation of

small portion of an equipotential surface, the corresponding along a iim-

lines of force be drawn, we shall evidently have a tubular

surface of infinitely small section. The force in any direction,

at any point within such a tube, so long as it does not cut

through attracting matter, is inversely as the section of the

tube made by a plane passing through the point and perpen
dicular to the given direction. Or, more simply, the whole

force is at every point tangential to the direction of the tube,

and inversely as its transverse section : from which the more

general statement above is easily seen to follow.

This is an immediate consequence of a most important

theorem, which will be proved later, 492. The surface in

tegral of the attraction exerted by any distribution of matter in

the direction of the normal at every point of any closed surface
is b-rrM ; where M is the amount of matter within the surface,

ivhile the attraction is considered positive or negative according
as it is inwards or outwards at any point of the surface.

For in the present case the force perpendicular to the tubular

part of the surface vanishes, and we need consider the ends

only. When none of the attracting mass is within the portion
of the tube considered, we have at once

Fvr - F vr = 0,

F being the force at any point of the section whose area is txr.

This is equivalent to the celebrated equation of Laplace

App. B (a); and below, 491 (c).

When the attracting body is symmetrical about a point, the

lines of force are obviously straight lines drawn from this

point. Hence the tube is in this case a cone, and, by 469,

CT is proportional to the square of the distance from the vertex.

Hence F is inversely as the square of the distance for points
external to the attracting mass.

When the mass is symmetrically disposed about an axis in

infinitely long cylindrical shells, the lines of force are evidently

perpendicular to the axis. Hence the tube becomes a wedge,
whose section is proportional to the distance from the axis,

and the attraction is therefore inversely as the distance from

the axis.
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Variation of When the mass is arranged in infinite parallel planes, each

Song
S

a
y
iine of uniform density, the lines of force are obviously perpen-

rce
dicular to these planes ;

the tube becomes a cylinder ; and.

since its section is constant, the force is the same at all dis

tances.

If an infinitely small length I of the portion of the tube

considered pass through matter of density p, and if CD be the

area of the section of the tube in this part, we have

This is equivalent to Poisson s extension of Laplace s equation

[ 491 (c)].

Potential 491. In estimating work done against a force which varies

aSractuTg inversely as the square of the distance from a fixed point, the

mean force is to be reckoned as the geometrical mean between

the forces at the beginning and end of the path : and, what

ever may be the path followed, the effective space is to be

reckoned as the difference of distances from the attracting point.

Thus the work done in any course is equal to the product of

the difference of distances of the extremities from the attract

ing point, into the geometrical mean of the forces at these

distances; or, if be the attracting point, and m its force

on a unit mass at unit distance, the work&quot; done in moving

a particle, of unit mass, from any position P to any other

position P ,
is

To prove this it is only necessary to remark, that for any

infinitely small step of the motion, the effective space is clearly

the difference of distances from the centre, and the working

force may be taken as the force at either end, or of any inter

mediate value, the geometrical mean for instance : and the

preceding expression applied to each infinitely small step shows

that the same rule holds for the sum making up the whole work

done through any finite range, and by any path.

Hence, by 485, it is obvious that the potential at P, of a

mass m situated at 0, is ~
;
and thus that the potential of any
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mass at a point P is to be found by adding the quotients of every Potential

portion of the mass, each divided by its distance from P. attracting
point.

a. For the analytical proof of these propositions, consider, Analytical

first, a pair of particles, and P, whose masses are m and unity, tion ofThe

and co-ordinates abc, xyz. If D be their distance potential.

The components of the mutual attraction are

x-a y-b 7 z-c

and therefore the work required to remove P to infinity is

(x
-

a) dx + (y
-

b) d// + (z
-

c) dz
I

ID

which, since the superior limit is D =
GO, is equal to

m
D

The mutual potential energy is therefore, in this case, the

product of the masses divided by their mutual distance; and

therefore the potential at x, y, z, due to m, is .

Again, if there be more than one fixed particle m, the same

investigation shows us that the potential at xyz is

And if the particles form a continuous mass, whose density at

a, 6, c is p, we have of course for the potential the expression

cladbdc

the limits depending on the boundaries of the mass.

If we call V the potential at any point P (x, y, z), it is Force at

evident (from the way in which we have obtained its value)
aily p011

that the components of the attraction on unit of matter at P are

Y __dV dV dV
dx

~Ty&amp;gt; ~^z
VOL. ii. s
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any point.
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Hence the force, resolved along any curve of which s is the arc,

dx
y&amp;lt;ty + Z &amp;lt;^ = _(

(^ c^ +
d_Vd^ +

dVdz\
18

ds
+

(is ds~ \dx ds dy ds dz ds)

Force with
in a homo
geneous
sphere.

All this is evidently independent of the question whether P lies

within the attracting mass or not.

b. If the attracting mass be a sphere of density p, and centre

a, b, c, and if P be within its surface, we have, since the exterior

shell has no effect,

dV 4 x-a

Rate of in

crease of the
force in any
direction.

Hence

c. Now if

= -7rp(x-a).

^

~dx~

^F_4
dx2 3

V &quot;

dx2

dy
2

dz*

we have V
2

^ =
0, as was proved before, App. B g (14) as a

particular case of g. The proof for this case alone is as follows:

d 1 x a d 2
1

J-_
3 (x a)

2

m

dx D~ I}
3 dx2D DA D 5

and from this, and the similar expressions for the second differ

entials in y and z, the theorem follows by summation.

Hence as
dadbdcf/Y dadbd

=
1 1 1 P

^&amp;gt;

~

and p does not involve aj, y, z, we see that as long as D does not

vanish within the limits of integration, i.e., as long as P is not a

point of the attracting mass

Laplace s

equation.

or, in terms of the components of the force,

dX
dY^ + dZ_ = ()

dx dy dz
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If P be within the attracting mass, suppose a small sphere Laplace s

to be described so as to contain P. Divide the potential into
q

two parts, Fj that of the sphere, V
2
that of the rest of the body.

The expression above shows that

Also the expressions for -
2 , etc., in the case of a sphere (b)

give V
-Fj

= -
47rp,

where p is the density of the sphere.

Hence as F= V
l
+ F8 Poisson s

2-rr extension of
V 2

F=-47rp, Laplace s

equation.

which is the general equation of the potential, and includes the

case of P being wholly external to the attracting mass, since

there
/o
= 0. In terms of the components of the force, this

equation becomes

dX dY dZ
-= + -= + -j-

=
4?rp.ax ay az

d. We have already, in these most important equations,

the means of verifying various former results, and also of adding
new ones.

Thus, to find the attraction of a hollow sphere composed of potential

concentric shells, each of uniform density, on an external point arranged&quot; in

(by which we mean a point not part of the mass). In this case ^
symmetry shows that F must depend upon the distance from J

the centre of the sphere alone. Let the centre of the sphere be densit^

origin, and let

r
2

. x2 + y
2

-f z
2

.

Then F is a function of r alone, and consequently

dV_dV_d/r_xdV
dx dr dx r dr

d2V 1 d V x2 dV x2 d2F

and V 2 F = -
-5- + -,-^- .

r dr dr

Hence, when P is outside the sphere, or in the hollow space,

within it, _2
dV d2 V _

r dr dr2

32
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Potential
of matter
arr:m. d in

concentric

spherical
shells of

uniform
density.

A first integral of this is r
2 = C.
dr

For a point outside the shell G has a finite value, which is
easily-

seen to be J/, where M is the mass of the shell.

For a point in the internal cavity (7 = 0, because evidently at

dV
the centre there is no attraction i.e., there r = 0, -y- = together.

Hence there is no attraction on any point in the cavity.

We need not be surprised at the apparent discontinuity of this

solution. It is owing to the discontinuity of the given distribution

of matter. Thus it appears, by 491 c, that the true general

equation of the potential is not what we have taken above, but

d*V 2dV

where p, the density of the matter at distance r from the centre,

is zero when r &amp;lt; a the radius of the cavity : has a finite value o-,

which for simplicity we may consider constant, when r
&amp;gt; a and

&amp;lt; a the radius of the outer bounding surface : and is zero, again,

for all values of r exceeding a . Hence, integrating from r 0,

dV
to r = r, any value, we have (since r

3

j-
= when r = 0),

r2
c?7

= ~ 47r

(
Wr = - J/

.&amp;gt;

if M^ denote the whole amount of matter within the spherical

surface of radius r
;
which is the discontinuous function of r

specified as follows :

From r = to r = a, r = a to r = a
,

r = a to r = oo,

(a
3

-&amp;lt;).

_ . _.

1
=

(r
3 -a3

),
M

l

=
0,

The corresponding values of V are, in order,

ir o / 2 ,\ v 47T0- /3a/2 -r2 a3
\

F=27ro- (a
2 -a

), F=-7r-( ^ I, V /s

(
-

).

We have entered thus into detail in this case, because such

apparent anomalies are very common in the analytical solution

of physical questions. To make this still more clear, we sub-

dV d2 V
join a graphic representation of the values of V, ,

and -=-j

for this case. ABQC, the curve for V, is partly a straight line,

and has a point of inflection at Q : but there is no discontinuity
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dV Potential

and no abrupt change of direction. OEFD, that for -=*-. is of matter

QY arranged in

concentric

continuous, but its direction twice changes abruptly. That for spherical
shells of

-y-g- consists of three detached portions, OE, Gfl, KL. density.

e. For a mass disposed in infinitely long concentric cylin-
Coaxal rfcht

drical shells, each of uniform density, if the axis of the cylinders uniform&quot;

be z, we must evidently have V a function of x2 + y
2

only. ^finite
&nd

7T7-
y J lone-thdV

&quot;dz

= r fche attraction is wholly perpendicular to the

length.

axis.

d2 V
Also,

-j-j
=

j
and therefore by (d)

V2 F = j-r + -
-j- =- 47TD.

(ir
2

r dr

Hence
r^=&amp;lt;7-47r (pr^r,ar J

from which conclusions similar to the above may be drawn.

f. If, finally, the mass be arranged in infinite parallel

planes, each of uniform density, and perpendicular to the axis
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Matter ar

ranged in
infinite

parallel
planes of

uniform
density.

of x
;
the resultant force must be parallel to this direction : that

is to say, Y= 0, Z =
0, and therefore

dX

which, if p is known in terms of #, is completely integrable.

Outside the mass, p = 0, and therefore

Eqni-
potcTifcml
surface.

or the attraction is the same at all distances, a result easily

verified by the direct methods.

If within the mass the density is constant, we have

X = C f + 4:irpx ;

and if the origin be in the middle of the lamina, we have,

obviously, C = 0. Hence if t denote the thickness, the values of

X at the two sides and in the spaces beyond are respectively

-
2irpt and -f 2wpt. The difference of these is 4cirpt ( 478).

g. Since in any case
j-

is the component of the attrac-
as

tion in the direction of the tangent to the arc

will be perpendicular to that arc if

the attraction

or V=G.

This is the equation of an equipotential surface.

If n be the normal to such a surface, measured outwards, the

whole force at any point is evidently

dV
dn

and its direction is that in which V increases.

integral of 492. Let S be any closed surface, and let Obe a point, either

Junction external or internal, where a mass, m
t
of matter is collected.

8urf
r

ace!

sed
Let N be the component of the attraction of m in the direction

of the normal drawn inwards from any point P, of 8. Then, if

da denotes an element of S, and // integration over tbe whole

of it,

or =0 .................... (1),

according as is internal or external.
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Case 1, internal. Let OPf^P^.. be a straight line drawn integral of

in any direction from 0, cutting S in P. P0} P., etc., and there- attracti
J

. ! r&amp;gt;

overacl

fore passing out at x* ,
in at P

2 ,
out again at P

8 ,
in again at P

4 ,
surface.

and so on. Let a conical surface be described by lines through

0, all infinitely near OP^..., and let to be its solid angle

( 465). The portions of ffNda- corresponding to the ele-

ments cut from S by this case wilJ be clearly each equal in

absolute magnitude to com, but will be alternately positive and

negative. Hence as there is an odd number of them their

sum is + com. And the sum of these, for all solid angles round

is
( 466) equal to 4nrm

;
that is to say, ffNda = 4?rm.

Case 2, external. Let 0P.P9 P,... be a line drawn from Equivalent
. r T-&amp;gt; J to Laplace s

passing across S, inwards at P.. outwards at 1\, and so on. equation,
491 c.

Drawing, as before, a conical surface of infinitely small solid

angle, o&amp;gt;,
we have still com for the absolute value of each of the

portions of fjNdcr corresponding to the elements which it cuts

from $; but their signs are alternately negative and positive:

and therefore as their number is even, their sum is zero.

Hence ffNda-
= 0.

From these results it follows immediately that if there be

any distribution of matter, partly within and partly without a

closed surface S, and N and do- be still used with the same

signification, we have

ffNd&amp;lt;r
=

4&amp;gt;jrM.......................... (2)

ifM denote the whole amount of matter within S.

This, with M eliminated from it hy Poisson s theorem, 491 c,

is the particular case of the analytical theorem of Chap. I. App.
A (a),

found by taking a= 1, and U =
1, by which it becomes

(3).

For let U be the potential at (x, y, z),
due to the distribution

of matter in question. Then, according to the meaning of 9,

we have dl7= N. Also, let p be the density of the matter at

(x, y, z).
Then

[
491 (c)]

we have

V 2U =
-4:7Tp.

Hence (3) gives

ffNda- =- lirfffpdxdydz
= 4=7rM.
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integral of 493. If in crossing any surface K we find an abrupt change

attraction in the value of the component force perpendicular to K, it

surface.
08

follows from (2) that there must be a condensation of matter

on K, and that the surface-density of this distribution is

if N be the difference of the values of the normal component on

the two sides of K\ as we see by taking for our closed surface

S an infinitely small rectangular parallelepiped with two of its

faces parallel to K and on opposite sides of it. This result was

found in 478, in a thoroughly synthetical manner. The same

result is found by the proper analytical interpretation of

Poisson s equation
dX dY dZ
-T-+ -j +-T =
dx dy dz

It is to be remarked that in travelling across K abrupt change

in the value of the component force along any line parallel to

K is forbidden by the Conservation of Energy.

494. The theorem of Laplace and Poisson, 492, for the

present application most conveniently taken
(

491 c) in its

differential form
1

(&amp;lt;PV
d*V d*V\

P= -^(d^ +W2 ~d^J
............... ()

Invrrse is explicitly the solution of the inverse problem, given the

problem,
potential at every point of space, or, which is virtually the same,

given the direction and magnitude of the resultant force at every

point of space, it is required to find the distribution of matter

by which it is produced.

494 a. Example. Let the potential be given equal to zero

for all space external to a given closed surface S, and let

V=t(x t y, z) ............
,
........... (2)

for all space within this surface
;

&amp;lt;f&amp;gt; (x, y, z) being any arbitral y

function subject to no other condition than that its value is

zero at S, and that it lias no abrupt changes of value within 6&quot;.

Abrupt changes in the values of differential coefficients,

are not excluded, but are subject to interpretations, as in 493,

if they occur.
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494 b. The required distribution of matter must include a inverse

surface distribution on S, because there is abrupt change in the
pr

value of the normal component force from

d&amp;lt;j&amp;gt;

2
d&amp;lt;}&amp;gt;

2

d&amp;lt;f&amp;gt;

2
\

at the inside of S to zero at the outside. Thus, by 493, and

by 494 (1), we have for our complete solution (compare 501,

505, 506, 507 below)

p 0, for space external to S

d&amp;lt;j&amp;gt;

2

dc/&amp;gt;

2 d^2^ ^

--
dz J

on

.(2).

and

for space enclosed by S.

49 4 c. From 492 (2), remembering that N= outside of S,

we infer that the total mass on and within S is zero, and

therefore the quantity of matter condensed on S is equal and

of opposite sign to the quantity enclosed by it.

494 d. Sub-Example. Let the potential be given equal to

zero for all space external to the ellipsoidal surface

and equal to

(3),

for the space enclosed by it : in other words let the potential be

zero wherever the value of (3) is negative, and equal to the value

of (3) wherever it is positive.

494 e. The solution (2) becomes

1 I 1

x2

wherever -
s

x2

at the surface
2

wherever

i z _-+ -, &amp;gt; 1
;

2 .,2

P + ?=1

^V-&amp;lt;i
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Inverse

problem.

Attractions
of solid

homogene
ous ellip
soid and
circum
scribed
focaloid of

equal mass
found
equal.

Hoinoeoids
and
Focaloids
defined.

p denoting the perpendicular from the centre to the tangent

plane of the ellipsoidal surface.

494 / Let q be an infinitely small quantity. The equation

y*
o 79 a

a -
q o&quot; -q c q

(5)

represents an ellipsoidal surface confocal with the given one,

and infinitely near it. The distance between the two surfaces

infinitely near any point (x, y, z) of either is easily proved to

be equal to J q/p. Calling this
t,
we have, from (4),

1 C\ t

(6).
4vr q

We conclude from (6)
and (4) and the theorem

(
494 c) of

masses that

494^. The attraction of a homogeneous solid ellipsoid

is the same through all external space as the attraction of a

homogeneous focaloid*

surface.

of equal mass coinciding with its

* To avoid complexity of diction we now propose to introduce two new

words,
&quot; focaloid

&quot; and &quot;

homoeoid,&quot; according to the following definitions :

(1) A homoeoid is an infinitely thin shell bounded by two similar surfaces

similarly oriented.

The one point which is situated similarly relatively to the two similar

surfaces of a homoeoid is called the homoeoidal centre. Supposing the homoeoid

to be a finite closed surface, the homoeoidal centre may be any internal or

external point. In the extreme case of two equal surfaces, the homoeoidal centre

is at an infinite distance. The homoeoid in this extreme case (which is interest

ing as representing the surface-distribution of ideal magnetic matter constituting

the free polarity of a body magnetized uniformly in parallel lines) may be called

a homoeoidal couple. ID every case the thickness of the homoeoid is directly

proportional to the perpendicular from the centre to the tangent plane at any

point. When (the surface being still supposed to be finite and closed) the centre

is external, the thickness is essentially negative in some places, and positive in

others.

The bulk of a homoeoid is the excess of the bulk of the part where the

thickness is positive above that where the thickness is negative. The bulk of

a homoeoidal couple is essentially zero. Its moment and its axis are important

qualities, obvious in their geometric definition, and useful in magnetism as
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Take now a homogeneous solid ellipsoid and divide Proof of11 Maclaurin s

it* into an infinite number of focaloids, numbered 1, 2, 3, ... Theorem.

from the surface inwards. Take the mass of No. 1 and dis

tribute it uniformly through the space enclosed by its inner

boundary. This makes no difference in the attraction through

space external to the original ellipsoid. Take the infinitesimally

increased mass of No. 2 and distribute it uniformly through the

space enclosed by its inner boundary. And so on with Nos. 3, 4,

&c., till instead of the given homogeneous ellipsoid we have

another of the same mass and correspondingly greater density

enclosed by any smaller confocal ellipsoidal surface.

494 i. We conclude that

Any two confocal homogeneous solid ellipsoids of equal Maclaurin s

masses produce equal attraction through all space external to

loth.

This is Maclaurin s splendid theorem. It is tantamount to

the following, which presents it in a form specially interesting

in some respects :

Any two thick or thin confocal focaloids of equal masses, Equivalent

each homogeneous, produce equal attraction through all space Sa^urirfs

i . 1.1 Theorem.
external to both.

494j.
Maclaurin s theorem reduces the problem of finding Digression

the attraction of an ellipsoid* on any point in external space, tractipnof

(which when attempted by direct integration presents diffi-
ai

culties not hitherto directly surmounted,) to the problem of

representing the magnetic moment and the magnetic axis of a piece of matter

uniformly magnetized in parallel lines.

(2) An elliptic homoeoid is an infinitely thin shell bounded by two con

centric similar ellipsoidal surfaces.

(3) A focaloid is an infinitely thin shell bounded by two confocal ellipsoidal

surfaces.

(4)
The terms &quot;thick homoeoid&quot; and &quot;thick focaloid&quot; may be used in

the comparatively rare cases (see for example 494 i, 519, 522) when forms

satisfying the definitions (1) and (3) except that they are not infinitely thin,

are considered.
* To avoid circumlocutions we call simply &quot;an ellipsoid&quot; a homogeneous

solid ellipsoid.
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Digression
on i he at
traction of

an ellipsoid.

To find the

potential of

an ellipsoid
at any inte
rior point.

finding the attraction of an ellipsoid on a point at its surface

which, as the limiting case of the attraction of an ellipsoid on

an internal point, is easily solved by direct integration, thus :

494 k. Divide the whole solid into pairs of vertically opposite

infinitesimal cones or pyramids, having the attracted point P for

common vertex.

Let EPE be any straight line through P, cut by the surface

at E arid E, and let da be the solid angle of the pair of cones

lying along it. The potentials at P of the two are easily shown

to be
-|
PE 2

da- and \ PE
2

dor, and therefore the whole contribu

tion of potential at P by the pair is \ (PE
2 + PE 2

)
da-.

Hence, if V denote the potential at P of the whole ellipsoid,

the density being taken as unity, we have

V=ff(PE
2 + PE 2

)da- ................... (7),

where // denotes integration over a hemisphere of spherical

surface of unit radius.

Now if x, y, z be the co-ordinates of P relative to the

principal axes of the ellipsoid ;
and

I, m, n the direction

cosines of PE, we have, by the equation of the ellipsoid,

(x + IPE)
2

(y + mPE)
2

(z + mPE)
2

_
~^~ b

2
c
2

whence

I
2 m2

lx my nz x y

When
(a;, y, z) is within the ellipsoid this equation, viewed as

a quadratic in PE, has its roots of opposite signs ;
the positive

one is PE, the negative is - PE .

Now if r
l ,

r
g
be the two roots of gr* + 2fr e = Q, we have

Hence

, =2 v

where

aiiJ

b
2

/mnyz nlzx lmxy\

\ 6V c~a
z a b

2
)
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Now in the ff integration of
(7), as we see readily by taking Digression

for example one of the hemispheres into which the whole sphere traction of

round P is cut by the plane through P perpendicular to z, it is

clear that

// I* m2

and therefore (7) and (8) give

2x2

2 12
b
2

c
2

or F=e$ + r + i -_ + _-_ (11)a da b db c do v y

where &amp;lt; - II
.., 3 (12).

JJ L + ^+^L
a2

b
2

c
2

494 I. A symmetrical evaluation of 3&amp;gt; not being obvious,

we may be content to take

I = cos 0, m= sin 6 cos
&amp;lt;/&amp;gt;,

n = sin sin $,

and c?o- = sin 6 dO
d&amp;lt;f&amp;gt;.

Using these, replacing I, and putting

=
,

b
\t&amp;gt;-

a ) c
2

\c
2 a

we find *- f\0 f

^
T7
-

, /^_ .
, ^ .

Jo Jo H cos
&amp;lt;j&amp;gt;

+ K sin ^

/
27r_c^__ f

00 ^ 2vr

Jo //cos2

&amp;lt;^,+
y^sma

&amp;lt;^&amp;gt;~ J

Hence

...(13).

By (12) we know that $ is a symmetrical function of a, b
}

c.
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T brin
(
12

)
to this form

&amp;gt;

take
traction of
an ellipsoid.

which reduces (13) to

^
L
- ....... (15).

Jo

The expression (11) for F, with (15) for $, is worth preserving

for its own sake and for some applications ;
but the following,

derived frcm it by performing the indicated differentiations, is

simpler and is generally preferable :

7
I&quot;

00

/, v? y
2

z
2

\ du
irabc\ 1-

2
--~--- -

i T
Jo \ a + u b + u c + uj

(,
t + UY (b

2 + iif (c
2 +

or, if M denote the mass of the ellipsoid,

du

\ a +u + u c

This, or (16), expresses the potential at any point (x, y&amp;gt; z)

within the ellipsoid (a, b, c) or on its surface.

494 m. The potential at any external point is deduced

from (17) through Maclaurin s theorem
[

494
i] simply by

substituting for a, b, c the semi-axes of the ellipsoid confocal

with (a, b, c),
and passing through x, y, z: these semi-axes

are J(a
2 + q\ J(b

2
+ q), V (c

2 + q), where q denotes the positive

root of the equation

(18);a + q + q c + q

which is a cubic in q. Thus, for an external point, we find

y* z
z

\ du

a 2 + q + u

which may be written shorter as follows :

-__ -(20).
b +u
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494 n. These formulas, (17) and (20), are, we believe, due Digression

to Lejeune Dirichlet*, whoproves them (Crelle s Journal, 1846, fcmctfonof

Vol. xxxn.) by showing that they satisfy the equation
an ellipsoid.

x2

y* z
z

when
a2+ b*

+
c

2&amp;lt;l &amp;gt;

d 2 V d2 V d2 V
and -72+ j 2 + -rnr

=
0,dx 2

dy dz

x2
?/

2
z
2

when
a&amp;gt;+T

+ S &amp;gt;l&amp;gt;
&amp;gt;

dV dV dV
and that

dx dy dz

have equal values at points infinitely near the surface

outside and inside it. His first step towards this proof (the

completion of which we leave as an exercise to our readers)
is the evaluation of dV/dx, dV/dy, dV/dz. In this it is neces

sary to remark that, for the external point, terms depending
on the variation of q as it appears in (20) vanish because of

(18): and taking the results which we then get instantly by
plain differentiation, and remembering that X = -dV/dx, &amp;lt;fec.,

we have, for the principal components of the resultant force,

du

a2 + uf (b
2 + u)* (c

2 + u}*

v &quot;&quot;* u i
du / ~&amp;gt; -i \

T / ,- TTT: rrr; ?\ (
21

)&amp;gt;

(a
2 + u)

2

(b
2 + uf (c + u)

du

where q = when
(x, y, z) is internal, and q is the positive root

of the cubic (18), when (x, y, z) is external.

Using (21) in (20) and (17), we see that

*
[An equivalent formula appears to have been given by Plana in 1810.

(Todhunter, Hist, of Th. of Attractions, Vol. n., p. 433.) H. L.]
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Digression
on the at-

tnictipn of

an ellipsoid.

494 o. For the case of an internal point or a point on

the surface, by putting q = 0, we fall back on the original ex

pressions (16) for V, and the proper differential coefficients

of it for X, Y, Z.

These results may be written as follows :

where $, &amp;lt;&, 33, are constants, of which &amp;lt; is given by (12),

or (13), or (15), and the others by (21) with q = ;
all

expressed in terms of elliptic integrals.

It follows that the internal equipotential surfaces are concen

tric similar ellipsoids with axes proportional to & 2
,
33

2
,

&amp;lt;$ *;

and that the internal surfaces of equal resultant force are con

centric similar ellipsoids with axes proportional to &&quot;

1

,
IS&quot;

1

,
(ST

1

.

The external equipotential s are transcendental plinthoids
* of

an interesting character. So are the equipotentials partly

internal (where they are ellipsoidal) and external (where they

are not ellipsoidal).

It is interesting, and useful in helping to draw the external

equipotentials, to remark the following relations between the

internal equipotentials,
the external equipotentials,

and the

surface of the attracting ellipsoid.

(1) The external equipotential V = C is the envelope of

the series of ellipsoidal surfaces obtained by giving an infinite

number of constant values to q in the equation

X
1 _ y -
*- O . 7 2 i . - i .-, .

a?+u

40

(2) This envelope is cut by the ellipsoidal surface

**
,

.yl + _f_ = l

a2 + q b* + q c
2 + q

* From Tr\lv eoei8r,s, brick-like. Plinthoid, as we now use the term, denotes as

it were a sea-worn brick; any figure with three rectangular axes, and surfaces

everywhere convex, such as an ellipsoid, or a perfectly symmetrical bale of

cotton with slightly rounded sides and rounded edges and corners. One extreme

of plinthoidal figure is a rectangular parallelepiped; another extreme, just not

excluded by our definition, is a figure composed of two equal and similar right

rectangular pyramids fixed together base to base, that is a &quot;regular
octohedron.
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for any particular value of q in the line along which it is Digression

touched by the particular one of the series of consecutive traction of

ellipsoidal surfaces (/3) corresponding to this value of q.

(3) If the ellipsoidal surface (J3) be filled with homogeneous

matter, the complete equipotential for any particular value of

C is composed of an interior ellipsoidal surface passing tan-

gentially to the external plinthoidal (but not ellipsoidal) surface

across the transitional line defined in (2).

It is easy to make graphic illustrations for the case of ellip

soids of revolution, by aid of 527 below.

494 p. In the case of an elliptic cylinder, which is im- Attraction

portant in many physical investigations, replace M by 47rabc/3 } niteiy long
, elliptic-aim put C = 00 . cylinder.

Thus we find

du

4:Trabx

/;

du

where

and q is the positive root of the quadratic

T2 u2 v2
ii

3
JU it - i wC i/ _,

2
+ ft

2 = 1 when
j
+ Yg &amp;gt; 1.

a + q b + q a b

For the case of q = 0, that is to say, the case of an internal

point, (24) becomes

^ 4t-rrab x , ,_ 4:7rab yX= r -, and Y= r f (25).a + b a a + b b v

494 q. For the magnitude of the resultant force we deduce internal

isodynamic
surfaces are

r&amp;gt; // -D-a irax 4:TTab / /X |T\ Similar to

fi=J(
a+Ya

)
=-f /( +-L) ....... (26); thebound-

0, + b V \a b/ ing surface.

VOL. U.
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Attraction
of an infi

nitely long
elliptic

cylinder.

Potential in

free space
cannot have
a maximum
or minimum
value :

is a mini-
max at a

point of
zero force
in free

space.

Earnshaw s

theorem of
unstable

equi
librium.

Mean po
tential over
a spherical
surface

qual to
that at ils

centre.

and it is remarkable that this is constant for all points on

xs
ii

2

the surface of the elliptic cylinder 2 +^-2 =l, and on each

similar internal surface, and that its values on different ones

of these surfaces are as their linear magnitudes.

495 a. At any point of zero force, the potential is a maximum
or a minimum, or a &quot;minima^.&quot; Now from 492 (2) it follows

that the potential cannot be a maximum or a minimum
at a point in free space. For if it were so, a closed

surface could be described about the point, and indefinitely

near it, so that at every point of it the value of the potential

would be less than, or greater than, that at the point ;
so that

N would be negative or positive all over the surface, and there

fore JfNdo- would be finite, which is impossible, as the surface

encloses none of the attracting mass.

495 b. Consider, now, a point of zero force in free space :

the potential, if it varies at all in the neighbourhood, must be

a minimax at the point, because, as has just been proved, it

cannot be a maximum or a minimum. Hence a material parti

cle placed at a point of zero force under the action of any

attracting bodies, and free from all constraint, is in unstable

equilibrium, a result due to Earnshaw*.

495 c. If the potential be constant over a closed surface which

contains none of the attracting mass, it has the same constant

value throughout the interior. For if not, it must have a

maximum or a minimum value somewhere within the surface,

which ( 495, a) is impossible.

496. The mean potential over any spherical surface, due to

matter entirely without it, is equal to the potential at its centre;

a theorem apparently first given by Gauss. See also Cambridge

Mathematical Journal, Feb. 1845 (Vol. iv. p. 225). It is one of

the most elementary propositions of spherical harmonic analysis,

applied to potentials, found by applying App. B. (16) to the

formulae of 539, below. But the following proof taken from

the paper now referred to is noticeable as independent of the

harmonic expansion.
*

Cambridge Phil. Trans., March, 1839.
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Let, in Chap. I. App. A. (a), S be a spherical surface, of Mean po-

radius a ; and let U be the potential at (x, y, z), due to matter a spherical

altogether external to it
]

let U f

be the potential of a unit equal to

of matter uniformly distributed through a smaller concentric centre.

spherical surface ;
so that, outside S and to some distance within

it, U =
;
and

r

(a) (1) becomes

it, U = -
;
and lastly, let a= 1. The middle member of App. A

-
fJdUda-

- JffU Wdxdydz,d

which is equal to zero, since V 2 7=0 for the whole internal

space, and
( 492) ffdUdo-=0. Equating therefore the third

member to zero we have

ffdo- UoU = ///UV
2U dxdydz.

Now at the surface, St
dV =

5 ;
and for all points external

to the sphere of matter to which U is due, V2U =
0, and for all

internal points V2U = kirp, if p be the density of the matter.

Hence the preceding equation becomes

4 ffUdv = ^JJfp Udxdydz.

Let now the density p increase without limit, and the spherical

space within which the triple integral extends, therefore become

infinitely small. If we denote by U the value of U at its centre,

which is also the centre of $, we shall have

fffp Udxdydz= VJffp dxdydz- U .

Hence the equation becomes

SJ?
47m2

&quot;

which was to be proved.

The following more elementary proof is preferable :

imagine any quantity of matter to be uniformly distributed

over the spherical surface. The mutual potential ( 547 below)
of this and the external mass is the same as if the matter were

condensed from the spherical surface to its centre.

497. If the potential of any masses has a constant value, F, Theorem of

through any finite portion, K, of space, unoccupied by matter,

it is equal to F through every part of space which can be reached

9
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Theorem of in any way without passing through any of those masses : a

proved. very remarkable proposition, due to Gauss, proved thus : If

the potential differ from V in space contiguous to K, we may,
from any point C within K, as centre, in the neighbourhood of

a place where the potential differs from F, describe a spherical

surface not large enough to contain any part of any of the

attracting masses, nor to include any of the space external

to K except such as has potential all greater than F, or all

less than F. But this is impossible, since we have just seen

( 496) that the mean potential over the spherical surface

must be F. Hence the supposition that the potential differs

from F in any place contiguous to K and not including masses,

is false.

408. Similarly we see that in any case of symmetry round

an axis, if the potential is constant through a certain finite

distance, however short, along the axis, it is constant through
out the whole space that can be reached from this portion of

the axis, without crossing any of the masses. (See 546, below.)

G
robiem

^^ ^et ^ ^e anj finite portion of a surface, or a complete

closed surface, or an infinite surface
;
and let E be any point

on S. (a) It is possible to distribute matter over S so as to

produce, over the whole of S, potential equal to F(E) t any

arbitrary function of the position of E. (b) There is only

one whole quantity of matter, and one distribution of it, which

can do this.

In Chap. i. App. A. (b) (e), etc., let a = 1. By (e) we see that

there is one, and that there is only one, solution of the equation

V2 Z7=0

for all points not belonging to S, subject to the condition that U
shall have a value arbitrarily given over the whole of S. Con

tinuing to denote by U the solution of this problem, and con

sidering first the case of S an open shell, that is to say, a finite

portion of curved surface (including a plane, of course, as a par

ticular case), let, in Chap. i. App. A. (a), U be the potential at

(x, y, z) due to a distribution of matter, having OT (Q) for density

at any point, Q. Let the triple integration extend throughout

infinite space, exclusive of the infinitely thin shell S. Although
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in the investigation referred to [App. A. (a)] the triple integral Green s

extended only through the finite space contained within a closed

surface, the same process shows that we have now, instead of

the second and third members of (1) of that investigation, the

following equated expressions :

//db-ZT {[dU]
-
(dU)}

- fffdxdydzU V
2U

=
ffd&amp;lt;rU{[dU ]

-
(dU )} -JffdxdydzUV U

where [9 7] denotes the rate of variation of U on either side of

8, infinitely near JS, reckoned per unit of length from S ;
and

(dU) denotes the rate of variation of U infinitely near E, on the

other side of S, reckoned per unit of length towards S ;
and

[9 7&quot;], (dC7 )
denote the same for U . Now we shall suppose the

matter of which U is the potential not to be condensed in finite

quantities on any finite areas of S
t
which will make

and the conditions defining U and U give, throughout the space

of the triple integral,

V 2

7=0, and V 2
7 = -47rar;

ta denoting the value of & (Q) when Q is the point (x, y, ).

Hence the preceding equation becomes

ffdaU {[dU]-(dU)}=--7rttfdxdydznU............ (1).

Let now the matter of which U is the potential be equal in

amount to unity and be confined to an infinitely small space

round a point Q. We shall have

fffdxdydzvU= U(Q) ffjvrdxdydz= U (Q),

if we denote the value of U at (Q) by U (Q) :

also U
=EQ

Hence (1) becomes

Hence a distribution of matter over JS, having reduced to
the proper

1 general

i{[8ZT]-(9Z7)} ..................... (3) |*S&amp;lt;

equation.

for density at the point E, gives U as its potential at
(a?, y, z).

We conclude, therefore, that it is possible to find one, but only
one, distribution of matter over S which shall produce an arbi-
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Green s

problem;

solved syn
thetically in
terms of

particular
solution of

Laplace s

equation.

trarily given potential, F (E), over the whole of S
; and in (2)

we have the solution of this problem, when the problem of find

ing U to fulfil the conditions stated above, has been solved.

If S is any finite closed surface, any group of surfaces, open or

closed, or an infinite surface, the same conclusions clearly hold.

The triple integration used in the investigation must then be

separately carried out through all the portions of space separated
from one another by 8, or by portions of jS.

If the solution, p, of the problem has been obtained for the case

in which the arbitrary function is the potential at any point of S
t

due to a unit of matter at any point P not belonging to S, that

is to say, for the case of F (E)
=^rp-&amp;gt;

the solution of the general

problem was shown by Green to be deducible from it thus :

U=ffPF(E)d&amp;lt;r (4).

The proof is obvious : For let, for a moment, p denote the super
ficial density required to produce J7, then

tp denoting the value

of
tp for any other element, E ,

of jS, we have

-//
Hence the preceding double integral becomes

(5);

-//*r! ................ (6).

But, by the definition of p,

and therefore

The second member of this is equal to U, according to the

definition of
tp.

The expression (46) of App. B., from which the spherical har

monic expansion of an arbitrary function was derived, is a case

of the general result (4) now proved.

isolation of 500. It is important to remark that, if S consist, in part, of

closed por- a closed surface, Q, the determination of U within it will be
tion of

^
surface. independent of those portions of S

t
if any, which lie without

it; and, vice versa, the determination of U through external
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space will be independent of those portions of S, if any, which isolation of

lie within Q. Or if S consist, in part, of a surface Q, ex- dosed por

tending infinitely in all directions, the determination of U surface.

through all space on either side of Q, is independent of those

portions of S, if any, which lie on the other side. This follows

from the preceding investigation, modified by confining the

triple integration to one of the two portions of space separated

completely from one another by Q.

501. Another remark of extreme importance is this : If Green s

F (E) be the potential at E of any distribution, Mt
of matter, applied to a

and if S be such as to separate perfectly any portion or portions
tribution of

of space, H, from all of this matter
;
that is to say, such that ^ influenc-

x
f ing a con-

it is impossible to pass into H from any part of M without
jljj^g

8 sur &quot;

crossing 8; then, throughout H, the value of V will be the

potential of M.

For if F denote this potential, we have, throughout H, V
2F= 0;

and at every point of the boundary of H, V = F(E). Hence,

considering the theorem of Chap. I. App. A. (c), for the space H
alone, and its boundary alone, instead of S, we see that, through
this space, V satisfies the conditions prescribed for U, and there

fore, through this space, U V.

Solved Examples. (1) Let If be a homogeneous solid ellip

soid
;
and let S be the bounding surface, or any of the external

ellipsoidal surfaces confocal with it. The required surface-

density is proved in 494 g to be inversely proportional to

the perpendicular from the centre to the tangent-plane ; or,

which is the same, directly proportional to the distance between

8 and another confocal ellipsoid surface infinitely near it. In

other words, the attraction of a focaloid
( 494 g, foot-note) of virtual^

homogeneous matter is, for all points external to it, the same theorem,
8

as that of a homogeneous solid of equal mass bounded by any
confocal ellipsoid interior to it.

(2) Let M be an elliptic homoeoid
(

494 g, foot-note) of Elliptic

homogeneous matter
;

and let 8 be any external confocal an example

ellipsoidal surface. The required surface-density is proved theiwSei-

in 519 below to be directly proportional to the perpen- sos, of

dicnlar from the centre to the tangent-plane ; and, which is problem.



56 ABSTRACT DYNAMICS. [501.

Green s

problem.

Complex
application
of 501.

the same, directly proportional to the distance between S and

a similar concentric ellipsoidal surface infinitely near it. In

other words, the attractions of confocal infinitely thin elliptic

homoeoids of homogeneous matter are the same for all external

points, if their masses are equal.

502. To illustrate more complicated applications of 501,

let 8 consist of three detached surfaces, 8
lt
$

2 ,
S

9 ,
as in the

diagram, of which 8
lt
8

Z
are closed, and Ss

is an open shell, and if

F(E) be the potential due to M, at any point, E, of any of these

portions of $; then throughout
H

lt
and ff

z ,
the spaces within

S
l
and without $

2 ,
the value of

U is simply the potential of M.

The value of U through K, the

remainder of space, depends, of

course, on the character of the

composite surface S, and is a

case of the general problem of which the solution was proved

to be possible and single in Chap. I. App. A.

503. From 500 follows the grand proposition: It is

possible to find one, but no other than one, distribution of matter

over a surface S which shall produce over S, and throughout all

space H separated by Sfrom every part of M, the same potential

as any given mass M.

Thus, in the preceding diagram, it is possible to find one,

and but one, distribution of matter over 8V S
9 ,
S

a
which shall

produce over S
s
and through Hl

and H
z
the same potential

as M.

The statement of this proposition most commonly made is :

It is possible to distribute matter over any surface, S, completely

enclosing a mass M, so as to produce the same potential as M
through all space outside S; which, though seemingly more

limited, is, when interpreted with proper mathematical com

prehensiveness, equivalent to the foregoing.

simuitane- 504. If S consist of several closed or infinite surfaces, 8l ,
S

2 , 8n ,

Influence&quot; respectively separating certain isolated spaces Hv Hz ,
H

z ,
from

in spaces

General

influence

possible
and deter
minate.
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H, the remainder of all space, and if F (E) be the potential separated

of masses m
lt
m

t ,
ra

g , lying in the spaces Hlt
H

2 , H^ the por- thin
n
co
n
n*

ely

tions of U due to 8
lt
S

9 ,
S

s , respectively will throughout H be ? T
equal respectively to the potentials of m

lt
m

z ,
m

s , separately.

For as we have just seen, it is possible to find one, but only

one, distribution of matter over S
l
which shall produce the

potential of m
lt throughout all the space Hlt

H
z ,
H

s , etc., and

one, but only one, distribution

over S
2
which shall produce the

potential of m
a throughout H,

H
iy
H

3 , etc.; and so on. But

these distributions on S
lt
S

z ,

etc., jointly constitute a distri

bution producing the potential

F(E) over every part of S
t
and L

therefore the sum of the potentials due to them all, at any

point, fulfils the conditions presented for II. This is therefore

( 50H) the solution of the problem.

505. Considering still the case in which F(E) is prescribed

to be the potential of a given mass, M : let 8 be an equipotential

surface enclosing M, or a group of isolated surfaces enclosing

all the parts of M, and each equipotential for the whole of M.

The potential due to the supposed distribution over S will be

the same as that of M, through all external space, and will

be constant ( 497) through each enclosed portion of space. Its

resultant attraction will therefore be the same as that ofM on

all external points, and zero on all internal points. Hence we

see at once that the density of the matter distributed over it,
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~D

Reducible to produce F (E) t
is equal to - - where R denotes the resultant

case of 4-7T

problem ; force of M, at the point E.

We have [dU]
= -R and (dU) = Q. Using this in 500 (2),

we find the preceding formula for the required surface-density.

tSnven -
506&amp;lt; Considering still the case of 501, 505, let S be the

Sved
f

equipotential not of M alone, as in 505, but ofM and another

of etectrfc
mass m completely separated by it from M- so that V+v = C

influence. a^ ^ if y an(j v denote the potentials of M and m respectively.

The potential of the supposed distribution of matter on S,

which, ( 501), is equal to V through all space separated fromM
by S, is equal to C v at S, and therefore equal to C v

throughout the space separated from m by S.

Thus, passing from potentials to attractions, we see that the

resultant attraction of 8 alone, on all points on one side of it

is the same as that of M
;
and on the other side is equal and

opposite to that of m. The most direct and simple complete
statement of this result is as follows :

If masses m, m
,
in portions of space, H, H , completely

separated from one another by one continuous surface S, whether

closed or infinite, are known to produce tangential forces equal

and in the same direction at each point of S, one and the same

distribution of matter over 8 will produce the force of m
throughout H ,

and that of 772 throughout H. The density of
73

this distribution is equal to
^

,
if R denote the resultant force

due to one of the masses, and the other with its sign changed.

And it is to be remarked that the direction of this resultant

force is, at every point, E, of 8, perpendicular tq 8, since the

potential due to one mass, and the other with its sign changed,

is constant over the whole of S.

Examples. 507. Green, in first publishing his discovery of the result

stated in 505, remarked that it shows a way to find an in

finite variety of closed surfaces for any one of which we can

solve the problem of determining the distribution of matter

over it which shall produce a given uniform potential at each

point of its surface, and consequently the same also throughout
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its interior. Thus, an example which Green himself gives, let Reducible

M be a uniform bar of matter, AA . The equipotential surfaces

round it are, as we have seen above
(

481 c), prolate ellipsoids examples.

of revolution, each having A and A for its foci
;
and the re

sultant force at any point P was found to be

mp

the whole mass of the bar being denoted by m, and its length

by 2a; A P+AP by 21; and the perpendicular from the

centre to the tangent plane at P of the ellipsoid, by p. We
conclude that a distribution of matter over the surface of the

ellipsoid, having
1 mp
4^ J(P_a)

for density at P, produces on all external space the same re

sultant force as the bar, and zero force or a constant potential

through the internal space. This is a particular case of the

Example (2) 501 above, founded on the general result regard

ing ellipsoidal homoeoids proved below, in 519, 520, 521.

508. As a second example, let M consist of two equal par

ticles, at points /, / . If we take the mass of each as unity,

the potential at P is ^p+ r/~p ;
arid therefore

i i

IP+TP-
is the equation of an equipotential surface

;
it being understood

that negative values of IP and I P are inadmissible, and that

any constant value, from oo to 0, may be given to G. The

curves in the annexed diagram have been drawn, from this

equation, for the cases of G equal respectively to 10, 9, 8, 7, 6,

5, 4-5, 4-3, 4-2, 41, 4, 3 9, 3-8, 37, 3 5, 3, 2 5, 2
;
the value of

II being unity.

The corresponding equipotential surfaces are the surfaces

traced by these curves, if the whole diagram is made to rotate

round II as axis. Thus we see that for any values of G less

than 4 the equipotential surface is one closed surface. Choosing
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Reducible any one of these surfaces, let R denote the resultant of forces
case of _ _

biem&quot; ex- equal to -j^^ and ^7^ in the lines PI and PI . Then if
amples.

matter be distributed over this surface, with density at P equal

R
to

,
its attraction on any internal point will be zero

;
and on

any external point, will be the same as that of /and / .

509. For each value of G greater than 4, the equipotential

surface consists of two detached ovals approximating (the last

three or four in the diagram, very closely) to spherical surfaces,

with centres lying between the points I and / but approxi

mating more and more closely to these points, for larger and

larger values of G.

Considering one of these ovals alone, one of the series en

closing / ,
for instance, and distributing matter over it according

-p

to the same law of density, -:-
,
we have a shell of matter

47T

which exerts ( 507) on external points the same force as / ;
and

on internal points a force equal and opposite to that of /.
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510. As an example of exceedingly great importance in the Electric

theory of electricity, let M consist of a positive mass, m, con

centrated at a point I, and a

negative mass, m t at / ;
and

let 8 be a spherical surface

cutting IT , and II produced ,

j -g ^ fj -^
in points A, A,, such that

Then, by a well-known geo

metrical proposition, we shall have IE : IE :: m : m
;
and

therefore

m _ m
1E~TE

Hence, by what we have just seen, one and the same distribu

tion of matter over S will produce the same force as m through
all external space, and the same as m through all the space

within S. And, finding the resultant of the forces -_-=, in El,

and
j

t in IE produced, which, as these forces are inversely

as IE to I E, is
( 256) equal to

m ,-,-, m2// 1
//

,
orIE\TE m IE3

we conclude that the density in the shell at E is

m2// J^
47rm IE*

That the shell thus constituted does attract external points as

if its mass were collected at /
,
and internal points as a certain

mass collected at I, was proved geometrically in 474 above.

511. If the spherical surface is given, and one of the points,

CA*
I, I ,

for instance /, the other is found by taking CI =

and for the mass to be placed at it we have

I A CA CI

Hence if we have any number of particles m lt
m

a , etc., at points
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Electric /, ,
/

2 , etc., situated without S, we may find in the same way
corresponding internal points //, 7

2 , etc., and masses m/, w
2 ,

etc.
; and, by adding the expressions for the density at E given

for each pair by the preceding formula, we get a spherical shell

of matter which has the property of acting on all external space
with the same force as ra/, m

2 , etc., and on all internal

points with a force equal and opposite to that of m
lt
m

z ,
etc.

512. An infinite number of such particles may be given,

constituting a continuous mass M\ when of course the corre

sponding internal particles will constitute a continuous mass,

M
,
of the opposite kind of matter

;
and the same conclusion

will hold. If 8 is the surface of a solid or hollow metal ball

connected with the earth by a fine wire, and M an external

influencing body, the shell of matter we have determined is

precisely the distribution of electricity on S called out by the

influence of M: and the mass J/
, determined as above, is

called the Electric Image of M in the ball, since the electric

action through the whole space external to the ball would be

unchanged if the ball were removed and M properly placed

in the space left vacant. We intend to return to this subject

under Electricity.

Traus- 513. Irrespectively of the special electric application, this

byrecipro- method of images gives a remarkable kind of transformation

vectors. which is often useful. It suggests for mere geometry what

has been called the transformation by reciprocal radius-vectors
;

that is to say, the substitution for any set of points, or for any

diagram of lines or surfaces, another obtained by drawing radii

to them from a certain fixed point or origin, and measuring off

lengths inversely proportional to these radii along their direc

tions. We see in a moment by elementary geometry that any

line thus obtained cuts the radius-vector through any point of

it at the same angle and in the same plane as the line from

which it is derived. Hence any two lines or surfaces that cut

one another give two transformed lines or surfaces cutting at

the same angle: and infinitely small lengths, areas, and volumes

transform into others whose magnitudes are altered respectively

in the ratios of the first, second, and third powers of the distances
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of the latter from the origin, to the same powers of the distances

of the former from the same. Hence the lengths, areas, and
byrecipro-

volumes in the transformed diagram, corresponding to a set vectors
1 &quot;8 &quot;

of given equal infinitely small lengths, areas, and volumes, how

ever situated, at different distances from the origin, are in

versely as the squares, the fourth powers and the sixth powers
of these distances. Further, it is easily proved that a straight

line and a plane transform into a circle and a spherical surface,

each passing through the origin ;
and that, generally, circles

and spheres transform into circles and spheres.

514. In the theory of attraction, the transformation of

masses, densities, and potentials has also to be considered.

Thus, according to the foundation of the method
( 512), equal

masses, of infinitely small dimensions at different distances

from the origin, transform into masses inversely as these dis

tances, or directly as the transformed distances : and, therefore,

equal densities of lines, of surfaces, and of solids, given at any
stated distances from the origin, transform into densities directly

as the first, the third, and the fifth powers of those distances
;

or inversely as the same powers of the distances, from the

origin, of the corresponding points in the transformed system.

515. The statements of the last two sections, so far as General

proportions alone are concerned, are most conveniently ex

pressed thus :

Let P be any point whatever of a geometrical diagram, or

of a distribution of matter, one particular point (&quot;
the

origin &quot;),
and a one particular length (the radius of the &quot;

reflect

ing sphere &quot;).

In OP take a point P , corresponding to P, and

for any mass m, in any infinitely small part of the given dis

tribution, place a mass m
; fulfilling the conditions

OF- m^^m = ^m.
Then if L, A, V, p(L), p(A), p(V) denote an infinitely small

length, area, volume, linear-density, surface-density, volume-

density in the given distribution, infinitely near to P, or

anywhere at the same distance, r, from as P, and if the

corresponding elements in the transformed diagram or dis-
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tribution be denoted in the same way with the addition of
of ratios, accents, we have

T , tf T r* T , a4

A r 4
. T7., a\r r 6

T7
.

L =-^L = L] A =
4
A =-r A; F =

-g F = -^ F,
r
z a2

r4 a4 r6 a6

p (L)
=

p(L) = P (L) ; P (A) = P (A) = sP (A)

The usefulness of this transformation in the theory of electricity,

and of attraction in general, depends entirely on the following

theorem :

Application 516. (Theorem.) Let
cf&amp;gt;

denote the potential at P due to

potential, the given distribution, and
&amp;lt;//

the potential at P due to the

transformed distribution : then shall

Let a mass ra collected at / be any part of the given dis

tribution, and let m at /
be the corresponding part

in the transformed distri

bution. We have

a* = or.oi=op. OP,

and therefore
1

01: OP :: OP : 01
;

which shows that the triangles IP 0, P I O are similar, so that

IP : P T :: JOlTOP : JOP.OI :: OI.OP:a\

We have besides

m : m :: 01 : a,

and therefore mm n D
IP

:

TP-
a : OR

Hence each term of
&amp;lt;/&amp;gt;

bears to the corresponding term of &amp;lt;

the same ratio
;
and therefore the sum,

&amp;lt;/&amp;gt;,

must be to the sum,

&amp;lt;//,

in that ratio, as was to be proved.
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517. As an example, let the given distribution be con- Anydistri-

fined to a spherical surface, and let be its centre and a its spherical

radius. The transformed distribution is the same. But the

space within it becomes transformed into the space without

it. Hence if
(/&amp;gt;

be the potential due to any spherical shell at

a point P, within it, the potential due to the same shell at the
2

point P in OP produced till OP =
-~-p

&amp;gt;

is equal to ^p, &amp;lt;

(which is an elementary proposition in the spherical harmonic

treatment of potentials, as we shall see presently). Thus, for

instance, let the distribution be uniform. Then, as we know
there is no force on an interior point, (f&amp;gt;

must be constant
;
and

therefore the potential at P , any external point, is inversely

proportional to its distance from the centre.

Or let the given distribution be a uniform shell, 8, and let uniform

be any eccentric or any external point. The transformed dis- t

tribution becomes
( 513, 514) a spherical shell, $

, with

density varying inversely as the cube of the distance from 0.

If is within 8, it is also enclosed by $ ,
and the whole space

within 8 transforms into the whole space without S . Hence

( 516) the potential of S at any point without it is inversely
as the distance from 0, and is therefore that of a certain quan

tity of matter collected at 0. Or if is external to 8, and

consequently also external to S
,
the space within 8 transforms

into the space within S . Hence the potential of S at any

point within it is the same as that of a certain quantity of

matter collected at 0, which is now a point external to it.

Thus, without taking advantage of the general theorems

( 499, 506), we fall back on the same results as we inferred

from them in 510, and as we proved synthetically earlier

( 471, 474, 475). It may be remarked that those synthetical

demonstrations consist merely of transformations of Newton s

demonstration, that attractions balance on a point within a

uniform shell. Thus the first of them
( 471) is the image of

Newton s in a concentric spherical surface
;
and the second is

its image in a spherical surface having its centre external to

the shell, or internal but eccentric, according as the first or the

second diagram is used.

VOL. II. 5
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Uniform 518. &quot;We shall give just one other application of the theorem

of 516 at present, but much use of it will be made later, in

the theory of Electricity.

Let the given distribution of matter be a uniform solid

sphere, B, and let be external to it. The transformed system
will be a solid sphere, B , with density varying inversely as

the fifth power of the distance from 0, a point external to it.

The potential of B is the same throughout external space as

that due to its mass, m, collected at its centre, C. Hence the

potential of B through space external to it is the same as that

of the corresponding quantity of matter collected at C
,
the

transformed position of C. This quantity is of course equal

to the mass of B . And it is easily proved that C is the posi

tion of the image of in the spherical surface of B . We
conclude that a solid sphere with density varying inversely

as the fifth power of the distance from ati external point, 0,

attracts any external point as if its mass were condensed at

the image of in its external surface. It is easy to verify

this for points of the axis by direct integration, and thence the

general conclusion follows according to 490.

Second in- 519. One other application of Green s great theorem of

ofattrac- & 503, showing us a way to find the potential and the resultant
tion of . ... . . . ,

i n

ellipsoid, force at any point within or without an elliptic homoeoid, irom

which we are led to a second very interesting solution of the

problem of finding the attraction of an ellipsoid differing

greatly from that of 494, we shall now give.

An elliptic homoeoid exercises no force on internal points.

Elliptic To prove this, let the infinitely thin spherical shell of 462,

sKerfaHGero imagined as bounded by concentric spherical surfaces, be dis-

intSnal torted ( 158, 160) by simple extensions and compressions

in three rectangular directions, so as to become an elliptic

homoeoid. In this distorted form, the volumes of all parts are

diminished or increased in the proportion of the volume of the

ellipsoid to the volume of the sphere; and ( 158) the ratio of

the lines HP, PK is unaltered. Hence the elements ///, KL,

still attract P equally ;
and therefore, as in 462, we conclude

that the resultant force on an internal point is zero.
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It follows immediately that the attraction on any point theorem

in the hollow space within a homoeoid not infinitely thin is Newton.

zero. This proposition is due originally to Newton.

520. In passing it may be remarked that the distribution of Distribu-

electricity on an ellipsoidal conductor, undisturbed by electric electricity

influence, is thus proved to be in simple proportion to the soidai con-

thickness of a homoeoid coincident with its surface, and there

fore
( 494, foot-note) directly proportional to the perpendicular

from the centre to the tangent plane.

521. From 519 and 478 it follows that the resultant Force

force on an external point anywhere infinitely near the homoeoid n elliptic

is perpendicular to the surface, and is equal to 4?r^ if t denote round.

the thickness of the shell in that neighbourhood (its density

being taken as unity). It follows also from 519 that the

potential is constant throughout the interior of the homoeoid

and over its surface. Hence the distance from this surface

to another equipotential infinitely near it outside is inversely

proportional to t \ and therefore
( 494) this second surface

is ellipsoidal and confocal with the first. By supposing the

proper distribution of matter
( 505) placed on this second

surface to produce over it, and through its interior, its uniform

potential, we see in the same way that the third equipotential

infinitely near it outside is ellipsoidal and confocal with it
;

and similarly again that a fourth equipotential is an ellipsoidal

surface confocal with the third, and so on. Thus we conclude

that the equipotentials external to the original homoeoid are

the whole series of external confocal ellipsoidal surfaces.

522 From this theorem it follows immediately that any Digression,

two confocal homoeoids of equal masses produce the same proof

1

of

attraction on all points external to both. And from this (as theorem!&quot;

pointed out by Chasles, Journal de I Ecole Polytechnique, 25 th

Cahier, Paris, 1837) follows immediately Maclaurin s theorem

thus : Consider two thick homoeoids having the outer surfaces

confocal, and also their inner surfaces confocal. Divide one

of them into an infinite number of similar homoeoids; and

divide the other in a corresponding manner, so that each of

its homoeoidal parts shall be confocal with the corresponding

5-2
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Digression, one of the first. These two thick homoeoids produce the same

proof of
t
force on any point external to both. Now let the hollow of

theorem! one of them, and therefore also the hollow of the other, become

infinitely small
;
we have two solid confocal ellipsoids, and it is

proved that they exert the same force on all points external

to both.

523. A beautiful geometric proof of the theorem of 521

due to Chasles, is given below, 532. The proof given in

521 is from Thomson s
&quot; Electrostatics and Magnetism&quot;

( 812, reprinted from Camb. Math. Jour., Feb. 1842).

The theorem itself is due to Poisson, who proved (in the Con-

naissance des Temps for 1837, published in 1834*) that the

resultant force of a homoeoid on an external point is in the

direction of the interior axis of the tangential elliptic cone

through the attracted point circumscribed about the homoeoid;

for it is a known geometrical proposition, easily proved, that

the three axes of the tangential cone are normal to the three

confocal surfaces, ellipsoid, hyperboloid of one sheet, and hyper-

boloid of two sheets, through its vertex.

524. The magnitude of the resultant force is equal to

where r denotes the thickness of the confocal homoeoid equal in

bulk to the given homoeoid.

Magnitude To express the magnitude and direction symbolically, let

?ion fj
irec &quot;

abc be the semi-axes of the given homoeoid, and a/3y those of tie

o^efiipu!?
confocal one through P the attracted point ;

and let p, t and

onxteri)al ^-, T he the perpendiculars from the centre to the tangent planes,

Brewed*&quot;
an(* tne thicknesses, at any point of the given homoeoid, and at

analytically tjie
j
)Oint p of the other. The volumes of the two homosoids

are respectively y ,.

kirabctlp, and 47ra/5yT/ra- ;

hence
abc t .

4?rT = 4?r --- -or ....................... (
1
),

and therefore the resultant force is

abc t
- -Iff

* See Todhunter s His tort/ of the Mathematical Theories of Attraction and

the Figure of the Earth, Vol. n. Articles 1331 141o.
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Supposing the rectangular co-ordinates of the attracted point Magnitude
n , n , and direc-

xyz given ;
to iind apy we have tion of

attraction

(3),

T v , i .
,

.
,
, . on external

where A is the positive root or the equation point, ex
pressed

X2 *
z
*

analytically.

these equations expressing the condition that the two ellipsoidal

surfaces are confocal.

To complete the analytical expression remark that

wx Txy tffz

~j j2

7&quot;

are the direction-cosines of the line of the resultant force.

525. To find the potential at any point remark that the Potential ot

difference of potentials at two of the external equipofcential sur- homoeoic

faces infinitely little distant from one another is
( 486) equal to

the product of the resultant force at any point into the distance

between the two equipotentials in its neighbourhood. Hence,

taking the potential as zero at an infinite distance
( 485), we

find by summation (a single integration) the potential at any

point external to the given homoeoid. Now let

os \dx, y \dy, z \dz

be the co-ordinates of the two points infinitely near one another,
on two confocal surfaces. The distance between the two surfaces

in the neighbourhood of this point is

izx

a* + \ b
2 + \^ c

2 +A

Let now the squares of the semi-axes of these surfaces be

Now by differentiation of (4) we have

xdx ydy zdz

Hence (6) becomes -=~ .

-
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Potential 01 Hence, and by 525 above, and by (2) of 8 524 we have
an elliptic

/ \ / a

homoeoid 7

ssaft* dv=-^ a

^.
t

-d\ ........................
(8).

internal aP7 P
found.

Hence, and by (3) of 524,

.(9),P Mflf+A)(P + X)(^ + A)

where GO denotes that the constant is so assigned as to render

the value of the integral zero when X = oo .

Synthesiser 526. Having now found the potential of an elliptic homoeoid,
concentric

-, ., ,, f .

homoeoids. and its resultant force at any point external or internal, we

can, by simple integration, find the potential and the resultant

force of a homogeneous ellipsoid, or of a heterogeneous ellipsoid

with, for its surfaces of equal density, similar concentric ellip

soidal surfaces. To do this we have only to divide the ellipsoid

into elliptic homoeoids, and find the potential of each by (9),

and the potential of the whole by summation
;
and again find

the rectangular components of the force of each by (2) and (5) ;

and from this by summation* the rectangular components of

the required resultant.

Let abc be the semi-axes of the whole ellipsoid. Let Oa, Ob, 6c,

be the semi-axes of the middle surface of one of the interior

homoeoids; and

those of its outer and inner bounding surfaces. From the

general definition of a homoeoid, elliptic or not, it follows imme

diately that tip
= dOJO. Let now p, a given function of 6, be the

density of the ellipsoid in the homoeoidal stratum corresponding
to 6. Hence by (9) remembering that the density there was

taken as unity, and putting 6a, Ob, Oc in place of a, b, c, we find

for the potential of the homoeoid =*= ^dO the following expres

sion,

-27rabcO*PdO T-j
-^

r
-

. ........ (10),

/(0v+ o (w + o* (0v + Qr
*

Chasles, &quot;Nouvelle solution du probleme de 1 attraction d un ellipsoiide

heterogSne sur un point exterieur&quot; (Liouville s Journal, Dec. 1840). Also W.

Thomson, &quot; On the Uniform Motion of Heat in Solid Bodies, and its connection

with the Mathematical Theory of Electricity, Electrostatics and Magnetism,&quot;

J 2124. (Keprinted from Cambridge Mathematical Journal, Feb. 1842.)
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where is introduced as the variable of the definite integration, Synthesis of

because X is presently to be made a function of 6. Hence if V homoeoids.

denote the potential of the whole ellipsoid, we have

F=-2ira6cf 2

pdO f
j o Jtf&amp;lt;f+

2
b
2 +

)

a
(0

2
c
2 +

where X is a function of 9 given by the equation

...... (11),

x2

2
b*

The expression (11) is simplified by introducing, instead of

or X, another variable X/$
2

. Calling this u, so that

X-0*M (13),

we have by (12)

a2 + u b
2 + u c

2 + u
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Potential
of homo
geneous
ellipsoid.

Attraction
of hetero

geneous
ellipsoid.

Putting for C successively a2

,
b
2

,
c
2

, using the result properly in

(15), and taking account of (16), and putting

$7rabc
=M

(17),

we find
&quot;

jq

du

+ u

which agrees with 494 above.

Just as we have found (15), we find from (2), (5), (13), and (14),

the following expression for the x-components of the resultant

force and the symmetrical for the y- and z-components :

Y_3Mx |-&quot;

pduA-
2 .(19),

where p, a function of $, is reduced to a function of u by (14).

For the case of a homogeneous ellipsoid (p= 1), these results

become (20) and (21) of 494. As there they were for external

points deduced by aid of Maclaurin s theorem from the attraction

ofan ellipsoid on a point at its surface, so now when proved other

wise they contain a proof of Maclaurin s theorem. This we see

in a moment by putting u = w + q in the integrals, whfch makes

the limits w - and w = oo .

527. In the case of a homogeneous ellipsoid of revolution

the integrals expressing the potential and the force-components

(which for a homogeneous ellipsoid, in general, are elliptic inte

grals) are reduced to algebraic and trigonometrical forms, thus :

let b = c and z 0.

We have

^W r

V=-T\ ~
4 Jl &amp;lt;b

s

3M
j
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which reduces the three integrals to 2/(6
2 - 2

)

5
. kf/(l -*)*,

2/ (b
2 - a2

)

1
. !edtl (1

- r)
1

,
and 2/

(Z&amp;gt;

2 - 2

)

f
. /&amp;lt;#/ (1

-f)* ;
and

makes the limits in each of them

We thus find
pofcential

o - r /72 _ 2 and attrac-

-tan-JL^KXx+Yy) (23), g*
2 (6

- flrr V +
geneous
ellipsoid of

revolution :

X = -^1 k/^Ta - tan&quot;

x/S^
(b

2 - a2

f (V a +3 \/ a +(
l

?&amp;gt;My
( /b

2 -a2

(b
2 - a2

)* (a
2 + q}*)

i =
&amp;lt; tan / g ^2

s V

2* \o CL /
* *^ *

i

....(24), oblate:

where, for any external point, q is the positive root of the

equation

* &quot;

...(25),a2 + ^ 6
2 +

a and
2/ denoting the co-ordinates of the attracted point respec

tively along and perpendicular to the axis of revolution, and

for any internal point or for points on the surface q = 0.

Formulas (23) and (24) realized for the case of a &amp;gt; I become

_ /a* -

V 2 +

2(a
2-62

)M 6
a

+g
-log

(27).

The structure of these expressions (23), (24), (26), (27), is

elucidated, and calculation of results from them is facilitated

by taking

-[- Q ^ \ /
&quot;

\ /)

and again e= /^ and^2 - b
2

)
=

(29);
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prolate. which reduces them to the following alternative forms :

= ton-/- i (Xx + Ty) = log
-

4 (X* + 7y) ...(30),

Then, for determining / or e, in the case of an external point,

(25) becomes

/ ........ (32).

In the case of an internal point we have

528. The investigation of the attraction of an ellipsoid

which was most popular in England 40 to 50 years ago re

sembled that of 494 above, in finding the attraction of an

internal point by direct integration, substantially the same as

that of 494, and deducing from the result the attraction of

an external point by a special theorem.

Third in- B.ut the theorem then popularly used for the purpose was

vestigium not ]y[ac}aurm s theorem, which was little known, strange
attraction

to g&y ^
in Knglan(j at fa^ time .

ft was Ivory s theorem, much
ellipsoid.

jegs jjeautjfui an(j simple and directly suitable for the purpose

than Maclaurin s, but still a very remarkable theorem, curiously

different from Maclaurin s, and in one respect more important

and comprehensive, because, as was shown by Poisson, it is

not confined to the Newtonian Law of Attraction, but holds

for force varying as any function of the distance. Before enun

ciating Ivory s theorem, take his following definition :

Correspond- 529. Corresponding points on two confocal ellipsoids are

on
g
confocai any two points which coincide when either ellipsoid is deformed

defmedL
8

by a pure strain so as to coincide with the other.

?SgonaV In connection with this definition, it is interesting to remark

of oonfS ^at eac^ Pint on ^e surface of the changing ellipsoid de-
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scribes an orthogonal trajectory of the intermediate series of ellipsoids -3

confocal ellipsoids if the distortion specified in the definition any point ol

is produced continuously in such a manner that the surface distorted

of the ellipsoid is always confocal with its original figure. sold:

To prove this proposition, which however is not necessary for proof.

our present purpose, let abc be the semi axes of the ellipsoid in

one configuration, and *J(a
2 + h), &amp;lt;J(b

2 + h), */(c
2 + h] iu another.

If xyz be the co-ordinates of any point P on the surface in the

first configuration, its co-ordinates in the second configuration

will be

x j(a*+h) J(V+h) V(c
g

-f7.)~ y ~ ............
(

When h is infinitely small the differences of the co-ordinates of

these points are

Hence the direction-cosines of the line joining them are propor
tional to x/a

2
, y/b

2
, z/c

2

,
and therefore it coincides with the

normal to the two infinitely nearly coincident surfaces.

530. The property of corresponding points (essential for ivory s

Ivory s theorem, and for Chasles
,
8 532 below) is this : correspond

ing points.

If P,P be any two points on one ellipsoid, and Q, Q the

corresponding points on any confocal ellipsoid, PQ is equal
to P Q.

To prove this, let xyz be the co-ordinates of P, and x y z

those of P . Taking (32) as the co-ordinates of Q, we find

Now because (x, y, z) is on the ellipsoidal surface (a, b, c),
we

have
x2 2

z
2

Hence the preceding becomes



7C ABSTRACT DYNAMICS. [530.

This is symmetrical in respect to xyz and x y z, and so the

proposition is proved.

ivory s 531. The following is Ivory s Theorem : Let P and P be

corresponding points on the surfaces of two homogeneous con-

focal ellipsoids (a, b, c) (of, &
, c) ;

the a&amp;gt;component
of the

attraction of the ellipsoid abc on the point P is to the ^-com

ponent of the attraction of the ellipsoid a b c on the point P as

be is to b c.

proved. Let x, y, z be the co-ordinates of P, the attracted point ;

, rjj
co-ordinates of any point of the mass

;

D distance between the two points ;

F (D) ddr}d be the attraction of the elemental mass

d^d-^dt, at
( 77, ),

on (x, y, );

Let X be the ^-component of the attraction of the whole ellip

soid (a, b, c)
on

(x, y, z).

We have

~

I- F (D) dD.

Now F (D) being any function of D, let

and let E, G be the positive and negative ends of the bar

of the ellipsoid, that is to say, the points on the positive and

negative sides of the plane yoz in which the surface of the

ellipsoid is cut by the line parallel to ox, having r?
for its other

co-ordinates. The proper limits being assigned to the ^-integra

tion in the formula for X above being assigned, we find

Now let E G be points on a confocal ellipsoidal surface

(a, b
, c) through P, corresponding to E and G on the surface of

the given ellipsoid (a, b, c) ;
and let P be the point on the first

ellipsoidal surface corresponding to P on the second. The y- z-

co-ordinates common to E G are respectively b /b .
77
and c /c .

;



531] STATICS. 77

and by lemma EP =E P and GP = G P. Hence if we change

from f],, as variables for the double integration in the preceding

formula for X, to i/ ,
we find

X=~
which is Ivory s theorem.

532. Two confocal homoeoids of equal masses being given,

the potential of the first at any point, P, of the surface of the between

second, is equal to that of the second at the corresponding tiais of two

T/ i
confocal

point, P ,
on the surface of the first. homoeoids.

Let E be any element of the first and E the corresponding

element of the second. The mass of each element bears to the

mass of the whole homoeoid the same ratio as the mass of the

corresponding element of a uniform spherical shell, from which

either homoeoid may be derived, bears to the whole mass of

the spherical shell. Hence the mass of E is equal to the mass

ofE -

f
and by Ivory s lemma

( 530) PE = P E. Hence the

proposition is true for the parts of the potential due to the

corresponding elements, and therefore it is due for the entire

shells.

This beautiful proposition is due to Chasles. It holds, what- Proof of

ever be the law of force. From it, for the case of the inverse

square of the distance, and from Newton s Theorem for this

case that the force is zero within an elliptic homoeoid, or, which

is the same, that the potential is constant through the interior,

it follows that the external equipotential surfaces of an elliptic

homoeoid are confocal ellipsoids, and therefore that the attrac

tion on an external point is normal to a confocal ellipsoid

passing through the point; which is the same conclusion as that

of 521 above.

533. An ingenious application of Ivory s theorem, by Law of at-

Duhamel, must not be omitted here. Concentric spheres are

a particular case of confocal ellipsoids, and therefore the at-

traction of any sphere on a point on the surface of an internal action tm an

concentric sphere, is to tha.t of the latter upon a point in the point

surface of the former as the squares of the radii of the spheres.
Now if the law of attraction be such that a liomoyeneous spherical
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Law of at
traction
when a uni
form spheri
cal shell
exerts no
action on an
internal

point.

Cavendish s

thtorem.

Centre of

gravity.

Jentrobaric
oodies,

proved
possible
by Green.

Properties
of centro-
&amp;gt;&amp;gt;aric

bodies.

shell of uniform thickness exerts no attraction on an internal point,
the action of the larger sphere on the internal point is reduced
to that of the smaller. Hence the smaller sphere attracts

points on its surface and points external to it, with forces

inversely as the squares of their distances from its centre.

Hence the law of force is the inverse square of the distance, as is

easily seen by making the smaller sphere less and less till it

becomes a mere particle. This theorem is due originally to

Cavendish.

534. (Definition.) If the action of terrestrial or other gravity
on a rigid body is reducible to a single force in a line passing

always through one point fixed relatively to the body, whatever
be its position relatively to the earth or other attracting mass,
that point is called its centre of gravity, and the body is called

a centrobaric body.

One of the most startling results of Green s wonderful

theory of the potential is its establishment of the existence of

centrobaric bodies
;

arid the discovery of their properties is

not the least curious and interesting among its very various

applications.

534 a. If a body (B) is centrobaric relatively to any one

attracting mass (A), it is centrobaric relatively to every other :

and it attracts all matter external to itself as if its own mass

were collected in its centre of gravity*.

Let be any point so distant from B that a spherical surface

described from it as centre, and not containing any part of B
y

is large enough entirely to contain A. Let A be placed within

any such spherical surface and made to rotate about any axis,

OK, through 0. It will always attract B in a line through G,

the centre of gravity of B. Hence if every particle of its mass

be uniformly distributed over the circumference of the circle

that it describes in this rotation, the mass, thus obtained, will

also attract B in a line through G. And this will be the case

however this mass is rotated round
;
since before obtaining

it we might have rotated A and OK in any way round 0, hold-

*
Thomson, Proc. R. S. E., Feb. 1864.
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ing them fixed relatively to one another. We have therefore Properties

found a body, A
, symmetrical about an axis, OK, relatively

baric

to which B is necessarily centrobaric. Now, being kept

fixed, let OK, carrying A with it, be put successively into an

infinite number, n, of positions uniformly distributed round
;

that is to say, so that there are equal numbers of positions of

OK in all equal solid angles round : and let -
part of the

mass of A be left in each of the positions into which it

was thus necessarily carried. B will experience from all this

distribution of matter, still a resultant force through G. But

this distribution, being symmetrical all round 0, consists of

uniform concentric shells, and ( 471) the mass of each of these

shells might be collected at without changing its attraction

on any particle of B, and therefore without changing its re

sultant attraction on B. Hence B is centrobaric relatively to

a mass collected at
;

this being any point whatever not

nearer than within a certain limiting distance from B (accord

ing to the condition stated above). That is to say, any point

placed beyond this distance is attracted by B in a line through
G

;
and hence, beyond this distance, the equipotential surfaces

of B are spherical with G for common centre. B therefore

attracts points beyond this distance as if its mass were collected

at G : and it follows
( 497) that it does so also through the

whole space external to itself. Hence it attracts any group
of points, or any mass whatever, external to it, as if its own
mass were collected at G.

534 b. Hence 497, 492 show that

(1) The centre of gravity of a centrobaric body necessarily lies

in its interior ; or in other words, can only be reached from
external space by a path cutting through some of its mass. And

(2) No centrobaric body can consist ofparts isolated from one

another, each in space external to all: in other words, the outer

boundary of every centrobaric body is a single closed surface.

Thus we see, by (1), that no symmetrical ring, or hollow

cylinder with open ends, can have a centre of gravity ;
for its
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Properties centre of gravity, if it had one, would be in its axis, and there-

baSo
1 r

fore external to its mass.
bodies.

534 c. If any mass whatever, M, and any single surface, S,

completely enclosing it be given, a distribution of any given

amount, M , of matter on this surface may be found which shall

make the whole centrobaric with its centre of gravity in any

given position ( G) within tJiat surface.

The condition here to be fulfilled is to distribute M over S,

so as by it to produce the potential

__
EG

any point, E, of S: V denoting the potential of M at this

point. The possibility and singleness of the solution of this

problem were proved above
( 499). It is to be remarked,

however, that if J/ be not given in sufficient amount, an extra

quantity must be taken, but neutralized by an equal quantity

of negative matter, to constitute the required distribution on S.

The case in which there is no given body M to begin with

is important; and yields the following :

c&amp;lt;ntrobaric 534 d. A given quantity of matter may be distributed in one

way, but in only one way, over any given closed surface, so as to

constitute a centrobaric body with its centre of gravity at any

yioen point within it.

Thus we have already seen that the condition is fulfilled by

making the density inversely as the cube of the distance from

the given point, if the surface be spherical. From what was

proved in 501, 506 above, it appears also that a centrobaric

shell may be made of either half of the lemtiiscate in the

diagram of 508, or of any of the ovals within it, by distributing

matter with density proportional to the resultant force of ra at 1

and ra at T\ and that the one of these points which is within

it is its centre of gravity. And generally, by drawing the

equipotential
surfaces relatively to a mass ra collected at a

point /, and any other distribution of matter whatever not

surrounding this point; and by taking one of these surfaces

which encloses / but no other part of the mass, we learn, by
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Green s general theorem, and the special proposition of 506, Centrobaric

how to distribute matter over it so as to make it a centrobaric

shell with / for centre of gravity.

534 e. Under hydrokinetics the same problem will be solved

for a cube, or a rectangular parallelepiped in general, in terms

of converging series
;

and under electricity (in a subsequent

volume) it will be solved in finite algebraic terms for the

surface of a lens bounded by two spherical surfaces cutting

one another at any sub-multiple of two right angles, and for

either part obtained by dividing this surface in two by a third

spherical surface cutting each of its sides at right angles.

534 f. Matter may be distributed in an in-finite number of Centrobaric

i , . solid -

ways throughout a given closed space, to constitute a centrobaric

body with its centre ofgravity at any given point within it.

For by an infinite number of surfaces, each enclosing the

given point, the whole space between this point and the given
closed surface may be divided into infinitely thin shells; and

matter may be distributed on each of these so as to make it

centrobaric with its centre of gravity at the given point. Both

the forms of these shells and the quantities of matter distributed

on them, may be arbitrarily varied in an infinite variety of

ways.

Thus, for example, if the given closed surface be the pointed Properties

oval constituted by either half of the lemniscate of the diagram baric
bod.i6s

of 508, and if the given point be the point / within it, a

centrobaric solid may be built up of the interior ovals with

matter distributed over them to make them centrobaric shells

as above
( 534c). From what was proved in 518, we see

that a solid sphere, with its density varying inversely as the

fifth power of the distance from an external point, is centro

baric, and that its centre of gravity is the image ( 512) of

this point relatively to its surface.

534(7. The centre of gravity of a centrobaric body composed The centre

of true gravitating matter is its centre of inertia. For a centro- (if it exist)

baric body, if attracted only by another infinitely distant body, of inertia.

or by matter so distributed round itself as to produce ( 499)

VOL. II. f&amp;gt;
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Thectmtre uniform force in parallel lines throughout the space occupied

$f Serfst) by it, experiences ( 534a)a resultant force always through its
is the centre ~ ., ^&amp;gt; ,

. ,-, .
, -, . ~ ., ,

of inertia, centre of gravity. But in this case this force is the resultant

of parallel forces on all the particles of the body, which (see

Properties of Matter, below) are rigorously proportional to

their masses : and in 561 it is proved that the resultant of

such a system of parallel forces passes through the point denned

in 230, as the centre of inertia.

A centre- 535 The moments of inertia of a centrobaric bodv are
baric bod.v is

J

symmetrical
eclua^ round all axes through its centre of inertia. In other

centrVof
words ( 285), all these axes are principal axes, and the body

gravity. js kinetically symmetrical round its centre of inertia.

Let it be placed with its centre of inertia at a point (origin

of co-ordinates), within a closed surface having matter so dis

tributed over it
( 499) as to have xyz [which satisfies y

2

(xyz)=0]
for potential at any point (x, y, z) within it. The resultant action

on the body is( 534a)the same as if it were collected at Oj that

is to say, zero : or, in other words, the forces on its different parts

must balance. Hence ( 551, 1., below) if p be the density of the

body at
(as, y, z)

yzpdxdydz
=

0, \\\ zxpdxdydz = 0, \ \\xypdxdydz = 0.

Hence OX, OF, OZ are principal axes; and this, however the

body is turned, only provided its centre of gravity is kept at 0.

To prove this otherwise, let V denote the potential of the

given body at (x, y, z) ;
u any function of x, y, z; and zor the

triple integral

MdudV
dudV dudV\ . .

,

dX dx+dydy
+
Tzd;)

dxdydz &amp;gt;

extended through the interior of a spherical surface, S, enclosing

all of the given body, and having for centre its centre of gravity.

Then, as in Chap. i. App. A, we have

= tt

= ff
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But if m be the whole mass of the given body, and a the radius Properties

of S, we have, over the whole surface of S, baric
bodies.

jr m J orr m
V=

,
and dV= .

a a9

Also [491 c] V 2 F =

vanishing of course for all points not belonging to the mass of

the given body. Hence from the preceding we have

4?r
lllupdxdydz

=
2 \\(adu + u) da- - \\\V^udxdydz.

Let now u be any function fulfilling V 2u = through the whole

space within 8 ; so that, by 492, we have /father = 0, and by

496, /m9cr=47ra2w
,

if u denote the value of u at the centre

of 8. Hence

1 1 \updxdydz = mu .

Let, for instance, u = yz. We have u =
0, and therefore

\yzpdxdydz = 0,

as we found above. Or let u =
(x* + y

z

)
-

(x
z + z

z

),
which gives

u =
; and consequently proves that

Hf(x
2 + O pdxdydz =

jjj(x*
+

2/

2

) pdxdydz,

or the moment of inertia round OF is equal to that round OX,
verifying the conclusion inferred from the other result.

536. The spherical harmonic analysis, which forms the sub- Origin of

ject of an Appendix to Chapter i., had its origin in the theory harmonfc

of attraction, treated with a view especially to the figure of the tSen
S

dre

earth; having been first invented by Legendre and Laplace for

the sake of expressing in converging series the attraction of

a body of nearly spherical figure. It is also perfectly appropriate
for expressing the potential, or the attraction, of an infinitely
thin spherical shell, with matter distributed over it according to

any arbitrary law. This we shall take first, being the simpler

application.

62
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Let x, ?/, z be the co-ordinates of P, the point in question,
reckoned from the centre, as origin of co-ordinates : p and p
the values of the density of the spherical surface at points E and

!
,
of which the former is the point in which it is cut by OP, or

this line produced : da- an element of the surface at E
t
a its

radius. Then, F being the potential at P, we have

v= p da-

EP .(1).

But, by B (48)

WP =M 1 +
!

ft }
and

p is internai

external,

-(2)

where Q. is the biaxal surface harmonic of (E, E ). Hence, if

p
r = S + S

l
+ S

2
+ &c......................... (3)

be the harmonic expansion for p, we have, according to B (52),

and

o
. /r\i)2 i

(
-

)
&amp;gt;
when P is internal,

i + 1W Jo 2i +

externa1

If, for instance, p = /6
f ,
we have

r== 7^7 oTTT inside
&amp;gt;

r= -^i-oj-Li
outside.

and

Thus we conclude that

Application 537. A spherical harmonic distribution of density on a

harmonic*
1

spherical surface produces a similar and similarly placed

spherical harmonic distribution of potential over every con

centric spherical surface through space, external and internal;

and so also consequently of radial component force. But the

amount of the latter differs, of course
( 478), by 4-Trp, for points

infinitely near one another outside and inside the surface, if p

Analysis
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denote the density of the distribution on the surface between Application
of spherical

them. harmonic
analysis.

If R denote the radial component of the force, we have

_ dV 477-r
- 1 iS

t
. ., 1

R =- = nrr- CT .
V inside,

dr a 2i + 1

and

Hence, if r = a, we have

R (outside) It (inside)
= 4w/S

p

i
=

47rp.

538. The potential is of course a solid harmonic through

space, both internal and external
;
and is of positive degree in

the internal, and of negative in the external space. The ex

pression for the radial component of the force, in each division

of space, is reduced to the same form by multiplying it by the

distance from the centre.

539. The harmonic development gives an expression in

converging series, for the potential of any distribution of matter

through space, which is useful in some applications.

Let x, y, z be the co-ordinates of P, the attracted point, and

x
, y ,

z those of P any point of the given mass. Then, if p

be the density of the matter at P
,
and V the potential at P

t
we

have

The most convenient view we can take as to the space through

which the integration is to be extended is to regard it as infinite

in all directions, and to suppose p to be a discontinuous function

of x t y
f

)
z

t vanishing through all space unoccupied by matter.

Now by App. B. (u) we have

when

and =ll + c, r &amp;lt;r
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Application
of spherical
harmonic
analysis.

Substituting this in (6) we have

Potential of

a distant

body.

+ 3
1

where (///) denotes integration through all the space external to

the spherical surface of radius r, and [///] integration through
the interior space.

This formula is useful for expressing the attraction of a mass

of any figure on a distant point in a single converging series.

Thus when OP is greater than the greatest distance of any part

of the body from 0, the first series disappears, and the expression

becomes a single converging series, in ascending powers of -
:

V= -
{$$$p dxf

dy dz + ^\$$$Qi
r

i

p dx dy dz
t

} (9).T T

If we use the notation of B. (u) (53), this becomes

V=
\ [f!fp

dx dy dz + %r-fffpHt [(x, y, *), (* , &amp;lt;/,
z )]dx dy

dz^
..(10),

and we have, by App. B. (v }
and

(to),

, n xx + yy + zz
where cos =

,
.

rr

From this we find

//^oA-^ W; #3=f[(^
and so on.

Let now M denote the mass of the body ;
and let be taken

at its centre of gravity. We shall have Y
*

fffp dx dy dz --=M; and JfJpHl
dx dy d* = 0.

Further, let OX, OY, OZ be taken as principal axes
( 281, 282),

so that JStfy z dx dy dz =
0, etc.,

and let A, J3, be the moments of inertia round these axes.

This will give

= % { (3*
3 - r2

) fjfp x
2dx dy dz + etc. }

=
{ (
3z2 - r2

) [ (A + B+ C) - A ] + etc. }
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Hence neglecting terras of the third and higher orders of small Potential

quantities (powers
of -T, we have the following approximate

expression for the potential :

As one example of the usefulness of this result, we may mention

the investigation of the disturbance in the moon s motion pro
duced by the non-sphericity of the earth, and of the reaction of

the same disturbing force on the earth, causing lunar nutation

and precession, which will be explained later.

Differentiating, and retaining only terms of the first and second

degrees of approximation, we have for the components of the

mutual force between the body and a unit particle at
(a;, i/, z),

F=etc., Z = etc.

whence

(13);

Comparing these with Chap. ix. below, we conclude that

540. The attraction of a distant particle, P, on a rigid body Attraction

if transferred (according to Poinsot s method explained below, on a distant

555) to the centre of inertia, /, of the latter, gives a couple

approximately equal and opposite to that which constitutes the

resultant effect of centrifugal force, if the body rotates with a

certain angular velocity about IP. The square of this angular

velocity is inversely as the cube of the distance of P, irre

spectively of its direction
; being numerically equal to three

times the reciprocal of the cube of this distance, if the unit

of mass is such as to exercise the proper kinetic unit ( 225)

force on another equal mass at unit distance. The general

tendency of the gravitation couple is to bring the principal axis

of least moment of inertia into line with the attracting point.

The expressions for its components round the principal axes

will be used in Chap. ix. ( 825) for the investigation of the

phenomena of precession and nutation produced, in virtue of
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Attraction the earth s non-sphericity, by the attractions of the sun and

on a distant moon. They are available to estimate the retardation produced

by tidal friction against the earth s rotation, according to the

principle explained above (276).

541. It appears from what we have seen that the amount

of the gravitation couple is inversely as the cube of the distance

between the centre of inertia and the external attracting point :

and therefore that the shortest distance of the line of the re-

of sultant force from the centre of inertia varies inversely as the

distance of the attracting point. We thus see how to a first
tionusedin ..111- i i , i

the com- approximation every rigid body is centrobanc relatively to a

of the distant attracting point.
centre
of gravity.

542. The real meaning and value of the spherical harmonic

method for a solid mass will be best understood by considering

the following application :

where F(r) denotes any function of r, and S^ a surface spherical

harmonic function of order i, with coefficients independent of r.

Substituting accordingly for p in (8), and attending to B. (52)

and (16), we find

v=
*irS

i j i fV--i -F(f^/.+ r-r*r r
i+2
F(r )dr\ ...(16).

Potential of 543. As an example, let it be required to find the potential~
of a solid sphere of radius a, having matter distributed through

it according to solid harmonic function F..

density.

That is to say, let

p
= V = rS

,
when r &amp;lt; a,

and p = r&amp;gt;a.

Hence in the preceding formula F (r)
= r

{ from r = to r = a,

and F(r) = 0, when r &amp;gt; a
-,
and it becomes

when P is internal, I

and
4?r L^L

.,
external.

~(2t+l)(2t+3) r
zi+l

This result may also be obtained by the aid of the algebraical
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formula B. (12) thus, on the same principle a&quot; the potential of a Potential of

uniform spherical shell was found in 491 (d). with har
monic dis-

-ITT 1 i f A A 1 / \ tribution ofWe have by 491
(c) density.

V 2

F=-47rF., whenr
&amp;lt;a,

j
,

lg
.

and -0 r&amp;gt;a.}

But by taking m = 2 in B. (12) we have

and therefore the solution of the equation

r*V
i

where U is any function whatever satisfying th equation

through the whole interior of the sphere. By choosing U and the

external values of F so as to make the values of F equal to one

another for points infinitely near one another outside and inside

the bounding surface, to fulfil the same condition for -=-
,
and

to make F vanish when r = GO
,
and when r = 0, we find

i

2(2i+l)

and obtain the expression of (17) for F external. For in the

7.
first place, F external and U must clearly be A -

,
and BV

{ ,

where A and B are constants : and the two conditions give the

equations to determine them.

544. From App. B. (52) it follows immediately that any potentiaiof

function of x, y, z whatever may be expressed, through the harmonic

wbole of space, in a series of surface harmonic functions, each

having its coefficients functions of the distance (r) from the

origin. Hence (16), with 8
( placed under the sign of integra

tion for r, gives the harmonic development of the potential

of any mass whatever
; being the result of the triple integra

tions indicated in (8) of 539, when the mass is specified by
means of a harmonic series expressing the density.
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^&quot;ne most imP rtant application of the harmonic de-
the earth,

velopment for solid spheres hitherto made is for investigating,
in the Theory of the Figure of the Earth, the attraction of a

finite mass consisting of approximately spherical layers of

matter equally dense through each, but varying in density
from layer to layer. The result of the general analytical
method explained above, when worked out in detail for this

case, is to exhibit the potential as the sum of two parts, of

which the first and chief is the potential due to a solid sphere,

A, and the second to a spherical shell, B. The sphere, A, is

obtained by reducing the given spheroid to a spherical figure

by cutting away all the matter lying outside the proper mean

spherical surface, and filling the space vacant inside it where

the original spheroid lies within it, without altering the density

anywhere. The shell, B, is a spherical surface loaded with

equal quantities of positive and negative matter, so as to com

pensate for the transference of matter by which the given

spheroid was changed into A. The analytical expression of

all this may be written down immediately from the preceding

formulae ( 536, 537) ;
but we reserve it until, under hydro

statics and hydrokinetics, we shall be occupied with the theory

of the Figure of the Earth, and of the vibrations of liquid

globes.

Case of the 546. The analytical method of spherical harmonics is very

Symmetri- valuable for several practical problems of electricity, magnetism,
and electro-magnetism, in which distributions of force sym
metrical round an axis occur : especially in this

;
that if the

force (or potential) at every point through some finite length

along the axes be given, it enables us immediately to deduce

converging series for calculating the force for points through
some finite space not in the axes. (See 498.)

being any conveniently chosen point of reference, in the

axis of symmetry, let us have, in series converging for a portion

AB of the axis,

J7=a + -fl + ajr+ -{ + a
a
r2

+-| + etc............... (a),

where U is the potential at a point, Q, in the axis, specified by
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OQ = r. Then if F be the potential at any point P, specified by Case of the

OP= r and QOP =
&, and, as in App. B. (47), Qlt Qa ,...

denote

the axial surface harmonics of 6, of the successive integral orders, an axis.

we must have, for all values of r for which the series converges,

provided P can be reached from Q and all points of AB within

some finite distance from it however small, without passing

through any of the matter to which the force in question is due,

or any space for which the series does not converge. For

throughout this space ( 498) V V must vanish, if V be the

value of the sum of the series
;
since V V is [App. B. (g)]

a potential function, and it vanishes for a finite portion of the

axis containing Q.

The series (6) is of course convergent for all values of r which

make (a) convergent, since the ultimate ratio Qi+l -r-Qi
for in

finitely great values of i, is unity, as we see from any of the

expressions for these functions in App. B.

In general, that is to say unless be a singular point, the

series for U consists, according to Maclauriii s theorem, of ascend

ing integral powers of r only, provided r does not exceed a certain

limit. In certain classes of cases there are singular points, such

that if be taken at one of them, U will be expressed in a series

of powers of r with fractional indices, convergent and real for

all finite positive values of r not exceeding a certain limit. The

expression for the potential in the neighbourhood of in any
such case, in terms of solid spherical harmonics relatively to

as centre, will contain harmonics [App. B. (a)] of fractional

degrees.

Examples (I.) The potential of a circular ring of radius a, Example

and linear density p, at a point in the axis, distant by r from the tSairfci

centre: larring;

BriSL., m
9

Hence U = 2-rrp fl 4 -= + ^7 -. etc.
)
when r &amp;lt; a ____ (2),r

\ 2 . 4 a* )

Tr 27rap /., 1
a2

1 . 3 a*
,

\ Potential
and U=--( 1 - J 2

+ -
etc.J

when r&amp;gt;a ...(3), symmetri-

an axis.
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Potential

symmetri
cal about
an axis.

(II.) of cir

cular disc-.

from which we have

and r &amp;gt; a.. (5).

(II.) Multiplying (1) by da, and integrating with reference

to a from a = as lower limit, and now calling U the potential

of a circular disc of uniform surface density p, and radius a, at

a point in its axis, we find

U=27rp{(a
2 + rf-r},

r being positive.

Hence, expanding first in ascending, and secondly in descend

ing powers of r, for the cases of r &amp;lt; a and r &amp;gt; a, we find

r
2

I I r
4

1 1 3 r6

=27rpf-rQ l
whenr&amp;lt;a,

and

It must be remarked that the first of these expressions is only

continuous from = to =
JTT ;

and that from O = ^TT to = TT

the first term of it must be made

+ 2irprQ 1 ,
instead of - (

27rprQ 1
.

(III.) Again, taking of the expression for U in (II.),
and

now calling U the potential of a disc of infinitely small thickness

c with positive and negative matter of surface density
- on its

two sides, we have

[obtainable
also from 477 (e), by integrating with reference to

x, putting r for x, and p for
pc].

Hence for this case

Potential in
the neigh
bourhood of
a circular

galvano
meter coil.

r &amp;lt; a,
/

and V= %7rp (\ ^2 Q l
~7 ~~4 ^3

+ etc -

)
wnen r &amp;gt; a

The first of these expressions also is discontinuous ;
and when 6



546.] STATICS. 93

is &amp;gt; JTT and &amp;lt; TT, its first term must be taken as -
2irp instead

of. 2-n-p.

547. If two systems, or distributions of matter, M and M
, Exhaustion

given in spaces each finite, but infinitely far asunder, be allowed energy.

to approach one another, a certain amount of work is obtained

by mutual gravitation : and their mutual potential energy

loses, or as we may say suffers exhaustion, to this amount:

which amount will ( 486) be the same by whatever paths the

changes of position are effected, provided the relative initial

positions and the relative final positions of all the particles are

given. Hence if m
lt
m

2 ,...
be particles of M\ m\, m 2 ,...

particles of M
; v\, v

2 ,...
the potentials due to M at the

points occupied by mlt
w

2 ,...; v
it

v
2 ,...

those due to M at

the points occupied by m\ t
m

a ,...; and E the exhaustion of

mutual potential energy between the two systems in any actual

configurations ;
we have

E =

This may be otherwise written, if p denote a discontinuous

function, expressing the density at any point, (x, y, z) of the

mass M. and vanishing at all points not occupied by matter of

this distribution, and if p be taken to specify similarly the other

mass M . Thus we have

E = ///pv dxdydz
=
///p vdxdy dz,

the integrals being extended through all space. The equality ef

the second and third members here is verified by remarking that

. [[[,P
d,*d,yd,z

~JJJ D
if D denote the distance between (x, y, z) and

( tx, ty, ,), the

latter being any point of space, and
tp the value of p at it. A

corresponding expression of course gives v : and thus we find one

sextuple integral to express identically the second and third

members, or the value of E, as follows:

548. It is remarkable that
.
it was on the consideration of Green s

an analytical formula which, when properly interpreted with

reference to two masses, has precisely the same signification as
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Greeny
the preceding expressions for E, that Green founded his whole

structure of general theorems regarding attraction.

In App. A. (a) let a be constant, and let [7, U be the

potentials at (x, y, z) of two finite masses, M, M , finitely distant

from one another : so that if p and p denote the densities of M
and M respectively at the point (x, y, z), we have

[
491 (c)]

It must be remembered that p vanishes at every point not form

ing part of the mass M : and so for p and M1

. In the present

merely abstract investigation the two masses may, in part or in

whole, jointly occupy the same space: or they may be merely

imagined subdivisions of the density of one real mass. Then,

supposing S to be infinitely distant in all directions, and observ

ing that UdV and U dU are small quantities of the order of the

inverse cube of the distance of any point of S from M and M
,

whereas the whole area of S over which the surface integrals of

App. A. (a) (1) are taken as infinitely great, only of the order of

the square of the same distance, we have

ffdSU c U = 0, and ffdSUZU = 0.

Hence (a) (1) becomes

(([(* + %L +
d
- ^^jd^^fff^xd^^fffy U^yd, ;

JJJ\dx dx dy dy dz dz J

showing that the first member divided by 4?r is equal to the

exhaustion of potential energy accompanying the approach of

the two masses from an infinite mutual distance to the relative

position which they actually occupy.

Without supposing S infinite, we see that the second member

of (a) (I),
divided by 47r, is the direct expression for the ex

haustion of mutual energy between M and a distribution con

sisting of the part of M within S and a distribution over S, of

density 3U
;
and the third member the corresponding ex

pression for M and derivations from Mr

.

Exhaustion 549. If, instead of two distributions, M and IT, two par-

n?rgy

tial

tides, w
x , 2

alone be given ;
the exhaustion of mutual

in allowing
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potential energy in allowing them to come together from in- condensa-

finitv, to any distance D (1, 2) asunder, is diffused
J J matter.

If now a third particle ms
be allowed to come into their neigh

bourhood, there is a further exhaustion of potential energy

amounting to

By considering any number of particles coming thus necessarily

into position in a group, we find for the whole exhaustion of

potential energy
mm=
D

where m, m denote the masses of any two of the particles, D Exhaustion

,1 T . T ^ -, ^^ i 01 of potential
the distance between them, and 22 the sum of the expressions energy.

for all the pairs, each pair taken only once. If v denote the

potential at the point occupied by m, of all the other masses,

the expression becomes a simple sum, with as many terms as

there are masses, which we may write thus

the factor J being necessary, because 2wi; takes each such term

as ^
* * twice over. If the particles form an ultimately con

tinuous mass, with density p at any point (x, y, ^), we have only
to write the sum as an integral ;

and thus we have

E = -!/// pvdx dy dz

as the exhaustion of potential energy of gravitation accompany

ing the condensation of a quantity of matter from a state of

infinite diffusion (that is to say, a state in which the density
is everywhere infinitely small) to its actual condition in any
finite body.

An important analytical transformation of this expression is

suggested by the preceding interpretation of App. A. (a); by
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Exhaustion
of potential
energy.

Gauss s

dv2 dv2 dv

which we find*

or = -

if R denote the resultant force at (x, y, z), the integration being
extended through all space.

Detailed interpretations in connexion with the theory of energy,
of the remainder of App. A., with a constant, and of its more

general propositions and formulae not involving this restriction,

especially of the minimum problems with which it deals, are of

importance with reference to the dynamics of incompressible

fluids, and to the physical theory of the propagation of electric

and magnetic force through space occupied by homogeneous or

heterogeneous matter; and we intend to return to it when we
shall be specially occupied with these subjects.

550. The beautiful and instructive manner in which Gauss

independently proved Green s theorems is more immediately
and easily interpretable in terms of energy, according to the

commonly-accepted idea of forces acting simply between par
ticles at a distance without any assistance or influence of inter

posed matter. Thus, to prove that a given quantity, Q, of

matter is distributable in one and only one way over a giveu

single finite surface 8 (whether a closed or an open shell), so as

to produce equal potential over the whole of this surface, he

shows (1) that the integral

pp dcrda-

has a minimum value, subject to the condition
,.

ffp*r-Q,

where p is a function of the position of a point, P, on 8, p its

value at P
,
and da- and da elements of 8 at these points : and

(2) that this minimum is produced by only one determinate

distribution of values of p. By what we have just seen
( 549)

the first of these integrals is double the potential energy of a

* Nichol s Encyclopedia, 2d Ed. 1860. Magnetism, Dynamical Eelations cf.
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distribution over S of an infinite number of infinitely small
method

mutually repelling particles : and hence this minimum problem
is

( 292) merely an analytical statement of the problem to

find how these particles must be distributed to be in stable

equilibrium.

Similarly, Gauss s second minimum problem, of which the Equiii-

preceding is a particular case, and which is, to find p so as to repellingA
particles

make enclosed

. .
-,

. surface.
a minimum, subject to

ffpdcr=Q,

where 1 is any given arbitrary function of the position of P,

and

V=
IS$&quot;

is merely an analytical statement of the question : how must

a given quantity of repelling particles confined to a surface S
be distributed so as to make the whole potential energy due to

their mutual forces, and to the forces exerted on them by a

given fixed attracting or repelling body (of which ft is the

potential at P), be a minimum ? In other words ( 292), to find

how the movable particles will place themselves, under the

influence of the acting forces*.

* Gauss s investigations here referred to will be found in Vol. V. of his

collected works, p. 197, in a paper entitled &quot;

Allgemeine Lehrsatze auf die im
verkehrten Verhaltnisse des Quadrats der Entfernung wirkenden Anziehungs-
und Abstossungs-Krafte ;

&quot;

originally published in 1839.

VOL. II



CHAPTER VII.

STATICS OF SOLIDS AND FLUIDS.

Rigid body. 551. WE commence with the case of a rigid body or system,

that is, an ideal substance continuously occupying a given solid

figure, admitting no change of shape, but free to move transla-

tionally and rotationally. It is sometimes convenient to regard

a rigid body as a group of material particles maintained by
mutual forces in definite positions relatively to each other, but

free to move relatively to other bodies. The condition of perfect

rigidity is approximately fulfilled in natural solid bodies, so long

as the applied forces are not sufficiently powerful to break them

or to distort them, or to condense or rarefy them to a sensible

extent. To find the conditions of equilibrium of a rigid body
under the influence of any number of forces, we follow the

example of Lagrange in using the principle of work ( 289)

and take advantage of our kinematic preliminary ( 197).

Equiii-
552. First supposing the body to be perfectly free to take

free rigid any motion possible to a rigid body: Give it an infinitesimal

translation in any direction, and an infinitesimal rotation round

any line.

I. In respect to the translational displacement, the work

done by the applied forces is equal to the product of the

amount of the displacement (being the same for all the points

of application) into the algebraic sum of the components of

the forces in its direction. Hence for equilibrium ( 289) the

sum of these components must be zero.
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II. In respect to rotational displacement the work done

by the forces is
( 240) equal to the product of the infinitesimal free rigid

angle of rotation into the sum of the moments
( 231) of the

forces round the axis of rotation. Hence for equilibrium ( 289)
the sum of these moments must be zero.

Since
( 197) every possible motion of a rigid body may be

compounded of infinitesimal translations in any directions, and

rotations round any lines, it follows that the conditions necessary

and sufficient for equilibrium are that the sum of the com

ponents of the forces in any direction whatever must be zero,

and the sum of the moments of the forces round any axis

whatever must be zero.

Let X
l ,
Y

lf
Z

l
be the components of one of the forces, and

x
lt y lt

z
l
the co-ordinates of its point of application relatively

to three rectangular axes. Taking successively these axes for

directions of the infinitesimal translations, and axes of the

infinitesimal rotations, we find, as necessary for equilibrium, the

following equations :

o .................. (i),

Of the latter three equations the first members are respectively

the sums of the moments round the three axes of co-ordinates, of

the given forces or of the components Xl}
Ylt Z^ &c., which we

take for them.

553. It is interesting and important to remark that the Important
proposition;

evanescence of the sum of components in any direction what

ever is secured if it is ascertained that the sums of the com

ponents in the directions of any three lines not in one plane

are each nil
;
and that the evanescence of the sum of moments

round any axis whatever is secured if it is ascertained that the

sums of the moments round any three axes not in one plane are

each nil.

Let
(I, m, n), (l

f

,
m

, n), (I&quot;, m&quot;, n&quot;)
be the direction cosine* proved.

of three lines not in one plane, a condition equivalent to non-

evanescence of the determinant I m n&quot;- &c. Let F, F ,
F&quot; be

the sums of components of forces along these lines. We have

F =1 ^(XJ + m im + n 2(^)1
F =l ^(X1 )

+ m ^(Y1 )
+ n ^(Zl)\ ................. (3).

72
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Equiii-
If each, of these is zero, each of the components 2&amp;lt;X, 2Y, 3Z

tree rigid
must be zero, as the determinant is not zero. The correspond-

body
ing proposition is similarly proved for the moments, because

(233) moments of forces round different axes follow the same

laws of composition and resolution as forces in different direc

tions.

E(
!

u
inof

*^ ~^or e(luilikrium wnen the body is subjected to one,

constrained two, three, four, or five degrees of constraint, equations to be

fulfilled by the applied forces, to ensure equilibrium, correspond

ingly reduced in number to five, four, three, two or one, are

found with the greatest ease by giving direct analytical expres

sion to ( 289), the principle of work in equilibrium.

Let x, y, z, w, p, cr be components of the translational velocity

of a point of the body, and of the angular velocity of the

body; and
( 201) let

&c., &c.,

be one, two, three, four, or five equations, representing the con

straints. The work done by the applied forces per unit of time is

\ (5}-Z
l2/1) J

&quot;W
or Xsb+ Yy + Zz + Lw + Mp + Na- ............... (5 ),

where X, Y, Z, L, M, N denote the sums that appear in (5),

that is to say, the sums of the components of the given forces

parallel to the axes of co-ordinates, and the sum of their mo
ments round these lines.

This amount of work, (5),
must be zero for all values of

x, y, z, iff, p, o- which satisfy equation or equations (4). Henee,

by Lagrange s method of indeterminate multipliers, we find

=01
=0
-0

.. -0
.. =

2(Yl
x

l
&amp;gt;-X

lyl)+ XI+XT + ... = j
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and the elimination of A, A.
,
... from these -six ec matrons gitfes

the correspondingly reduced number of equations of equilibrium constrained
, -, i- T f rigid body.

among the applied forces.

To illustrate the use of these equations suppose, for example, Example,

the number of constraints to be two, and all except four of straints;

the applied forces be given : the six equations (5) determine equations of

i if n in r&amp;gt; i i i x ^r equilibrium
these tour forces, and allow us it we desire it to calculate trie found;

two indeterminate multipliers X, V. The use of finding the

values of these multipliers is that

\A, \B, \C, \G, \ff, \I

are the components and the moments of the reactions of the and the two

IT 1-111 factors de-

first constraining body or system on the given body, and termining

i /( -V zx -v /r * /
/&amp;gt; &amp;gt;

/ rr &amp;lt;i 7
of tl

?
e con-

\A, \JD. XG, XCr, \tt , \1 etraming
forces called

,. jn , into action.
are those of the second.

555. When it is desired only to find the equations of equili- Equations

brium, not the constraining reactions, the easiest and most direct m&amp;gt;rmm

. ., P i
without

way to the object is, to first express any possible motion of the expression

body in terms of the five, four, three, two or one freedoms st inin
j

( 197, 200) left to it by the one, two, three, four or five con

straints to which it is subjected. The description in 102 of

the most general motion of a rigid body shows that the most

general result of five constraints, or the most general way of

allowing just one freedom, to a rigid body, is to give it guidance

equivalent to that of a nut on a fixed screw shaft. If we unfix

this shaft and give it similar guidance to allow it one freedom,

the primary rigid body has two freedoms of the most general

kind. Its double freedom may be resolved in an infinite

number of ways (besides the one way in which it is thus com

pounded) into two single freedoms. Triple, quadruple, and

quintuple freedom may be similarly arranged mechanically.

556. The conditions of equilibrium of a rigid body with

single, double, triple, quadruple or quintuple freedom, when
each of the constituent freedoms is given in the manner speci

fied in 555, are found by writing down the equation or equa
tions expressing that the applied forces do no work when the
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/;, boay moves simply according to any one alone of the given
freedoms. We shall take first the case of a single freedom of

the most general kind.

tfquiii- Let s* be the axial motion per radian of rotation: so that
brmm of

.

r
f

iiedto
P

a&quot;

# = SG) expresses the relation between axial translational velo-

Mctionfess ^ anc^ an3U^ar velocity in the possible motion. Let HK be
fixed screw, the axis of the screw, and N

t
the nearest point to it in L

l
M

I}

the line of P
lt

a first of the applied forces. Let i
l
be the incli

nation of L
l
M

l
to HK, and a

:
the distance of ^ from HK.

At any point in L^M^ most conveniently at the point Nlt

resolve P
t
into two components, Px cos^, parallel to the axis of

freedom, and P
l
sin ^ perpendicular to it. The former compo

nent does work only on the axial component of the motion, the

latter on the rotational; and the rate of work done by the

two together is

Work done SO) P^ COS \ + CIO) P
I
sin ^ .

by a single
force on a Hence, if 2 denotes summation for all the given forces, the
nut,turning
on a fixed

equation of equilibrium to prevent them from taking advantage

of the first freedom is

Equation of s%P. cos i + Sc^P, sin i = ............... (7) ;

equili-

forees ap- or, in words, the step of the screw multiplied into the sum of the

Sutona* axial components must be equal to the sum of the moments of
screw.&quot;

e s

the force round the axis of the screw.

The direction taken as positive for the moments in the

preceding statement is the direction opposite to the rotation

which the nut would have if it had axial motion in the direc

tion taken as positive for those axial components.

557. The equations of equilibrium when there are two or more

freedoms, are merely (7) repeated with accents to denote the

elements corresponding to the several guide-screws other than

the first. Thus if s, s, s&quot;
t &c., denote the screw-steps ;

a
lf a/,

a&quot;, &c., the shortest distances between the axes of the screws

and the line of P
x ;

i
lt /,

i&quot;
t &c., the inclinations of this line to

the axes; and a
a , a2 , &c., and i

2)
z*
2 , &c., corresponding elements

* The quantity s thus defined we shall, for brevity, henceforth call the

screw -step.
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for the line of the second force, and so on
;
we have, for the

equations of equilibrium,

s i + SttP sin i

cos i/ + 2a
1
P

1
sin i{

=
,

&quot;^ cos t/ + Sa/ Pj sin i/
= h

&c., &C.,

onstraint bei

Ax +Blj + Gz + Gv +Hp + la- =0

The equations of constraint being, as in 553, (4), The same
analytically

(9),
nates.

suppose, for example, these equations to be four in number.

Take two more equations

ax + by + GZ + gtz -\-hp + ia =
a&amp;gt;

= co
^ &quot;

where a, b, . . . and a
,
6

,
... are any arbitrarily assumed quanti

ties : and from the six equations (9) and (10) deduce the fol

lowing :

V, )
, ,

V, J
^ ^ ;

where ^i, 33,... and &
,
9S

7

,
... are known, being the determi- Twogene-

nantal ratios found in solving (9) and (10). Thus the six rect- ponent
. , ... , . f M velocities

angular component velocities are expressed in terms 01 two correspond-

generalized component velocities w, o/, which, in virtue of the freedoms.

four equations of constraint (9), suffice for the complete specifi

cation of whatever motion the constraints leave permissible.

In terms of this notation we have, for the rate of working of

the applied forces,

Xx + Yy + Zz + Lw + Mp + No-

This must be nil for every permitted motion in order that the

forces may balance. Hence the equations of equilibrium are

and

0)

Q)
...........

( T
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Two gene- Similarly with one, or two, or three, or five (instead of our ex

ponent ample of four) constraining equations (9), we find five, or four,

correspond- or three, or one equation of equilibrium (13). These equations
freedoms. express obviously the same conditions as those expressed by (8) ;

the first of (13) is identical with the first of (8), the second of

(13) with the second of (8), and so on, provided CD, a/,... cor

respond to the same components of freedom as the several screws

of (8) respectively. The equations though identical in substance

are very different in form. The purely analytical transformation

from either form to the other is a simple enough piece of ana

lytical geometry which may be worked as an exercise by the

student, to be done separately for the first of (8) and the first

of (13), just as if there were but one freedom.

Equiiibrant 558. Any system of forces which if applied to a rigid body
ant.

res &quot;

would balance a given system of forces acting on it, is called an

equilibrant of the given system. The system of forces equal

and opposite to the equilibrant may be called a resultant of the

given system. It is only, however, when the resultant system

is less numerous, or in some respect simpler, than the given

system that the term resultant is convenient or suitable. It is

used with great advantage with respect to the resultant force

and couple (
559 g, below) to which Poinsot s method leads, or

to the two resultant forces which mathematicians before Poinsot

had shown to be the simplest system to which any system of

forces acting on a rigid body can in general be reduced. It is

only when the system is reducible to a single force tbat the

term &quot;

resultant
&quot;

pure and simple is usually applied.

559. As a most useful commentary on and illustration of

tbe general theory of the equilibrium of a rigid body, which we

have completed in 552 557, and particularly for the pur

pose of finding practically convenient resultants in a very

simple and clear manner, we may now with advantage intro

duce the beautiful method of Couples, invented by Poinsot.

Couples. In 234 we have already defined a couple, and shown that

tbe sum of the moments of its forces is the same about all

axes perpendicular to its plane. It may therefore be shifted to

any new position in its own plane, or in any parallel plane,



559.] STATICS. 105

without alteration of its effect on the rigid body to which Couples,

it is applied. Its arm may be turned through any angle
in the plane of the forces, and the length of the arm and the

magnitudes of the forces may be altered at pleasure, without

changing its effect provided the moment remain unchanged.
Hence a couple is conveniently specified by the line defined as

its &quot;axis&quot; in 234. According to the convention of 234 the

axis of a couple which tends to produce rotation in the direc

tion contrary to the motion of the hands of a watch,

must be drawn through the front of the watch and

vice versd. This may easily be remembered by the

help of a simple diagram such as we give, in which

the arrow-heads indicate the directions of rotation,

and of the axis, respectively.

559 b. It follows from 233, 234, that couples are to be composi-

compounded or resolved by treating their axes by the law of coup?es.

the parallelogram, in a manner identical with that which we
have seen must be employed for linear and angular velocities,

and forces.

Hence a couple G, the direction cosines of whose axis are

X, ju,, v, is equivalent to the three couples GX, G-^, Gv about the

axes of x, y, z respectively.

559 c. If a force, F, act at any point, .A, of a body, it may Force re-

be transferred to any other point, B. Thus : by the principle of force aid*

superposition of forces, introduce at B, in the line through it
couple -

parallel to the given force F, a pair of equal and opposite forces

F and F. Then F at A, and F at B, form a couple, and

there remains F at B.

From this we have, at once, the conditions of equilibrium Application

of a rigid body already investigated in 552. For, each force brSffof

may be transferred to any assumed point as origin, if we intro

duce the corresponding couple. And the forces, which now act

at one point, must equilibrate according to the principles of

Chap. VI.
;
while the resultant couple, and therefore its com

ponents about any three lines at right angles to each other, must

vanish.
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Forces n- 559 d. Hence forces represented, not merely in magnitude
by the sides and direction, but in lines of action, by the sides of any closed

n

Plyg n whether plane or not plane, are equivalent to a single

couple. For when transferred to any origin, they equilibrate,

by the Polygon of Forces
( 27, 256). When the polygon is

plane, twice its area is the moment of the couple ;
when not

plane, the component of the couple about any axis is twice the

area of the projection on a plane perpendicular to that axis. The

resultant couple has its axis perpendicular to the plane ( 236)

on which the projected area is a maximum.

Forces pro- 559 6. Lines, perpendicular to the sides of a triangle, and

and perpen- passing through their middle points, meet; and their mutual

thesides of inclinations are equal to the changes of direction at the corners,
a triangle.

in travelling round the triangle. Hence, if at the middle points

of the sides of a triangle, and in its plane, forces be applied all

inwards or all outwards; and if their magnitudes be proportional

to the sides of the triangle, they are in equilibrium. The same

is true of any plane polygon, as we readily see by dividing it

into triangles. And if forces equal to the areas of the faces be

applied perpendicularly to the faces of any closed polyhedron, at

their centres of inertia, all inwards or all outwards, these also

will form an equilibrating system ;
as we see by considering the

evanescence of (i) the algebraic sum of the projections of the

areas of the faces on any plane, and of (ii)
the algebraic sum of

the volumes of the rings described by the faces when the solid

figure is made to rotate round any axis, these volumes being

reckoned by aid of Pappus theorem ( 569, below).

composi- 559 / A couple and a force in a given line inclined to its

foreand plane may be reduced to a smaller couple in a plane perpen

dicular to the force, and a force equal and parallel to the given

force. For the couple may be resolved into two, one in a plane

containing the direction of the force, and the other in a plane

perpendicular to the force. The force and the component

couple in the same plane with it are equivalent to an equal

force acting in a parallel line, according to the converse of

559 c.
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559 g. We have seen that any set of forces acting on

a rigid body may be reduced to a force at any point and a any set of

couple. Now
(

559 /) these may be reduced to an equal force ing on a

acting in a definite line in the body, and a couple whose plane is

perpendicular to the force, and which is the least couple which,

with a single force, can constitute a resultant of the given set of

forces. The definite line thus found for the force is called the

Central Axis. It is the line about which the sum of the moments Central
axis.

of the given forces is least.

With the notation of 552, 553, let us suppose the origin to

be changed to any point x
, y ,

z . The resultant force has still

the components 2 (X), S (F), 2 (Z), or Rl, Em, En, parallel to

the axes. But the couples now are

or

G\ - E (ny
1 -

mz), G^-E (lz

r -
nx), Gv-E (mx

f -
ly l

The conditions that the resultant force shall be perpendicular to

the plane of the resultant couple are

GX-R(ny -mz
} _ G^-R(lz -nx) _ Gv-E (mx

f -
ly)

I m n

These two equations among a/, y ,
z are the equations of the

central axis.

We find the same two equations by investigating the con

ditions that the resultant couple

J[G\-R(ny ~ mz
)]

2+ [G^-R(lz- nx )]
2+ [Gv -R(mx -

liJ)J

may be a minimum subject to independent variations of x
,

y ,
*

560. By combining the resultant force with one of the Reduction

forces of the resultant couple, we have obviously an infinite forces!

number of ways of reducing any set of forces acting on a rigid

body to two forces whose directions do not meet. But there is

one case in which the result is symmetrical, and which is there

fore worthy of special notice.

Supposing the central axis of the system has been found, s.vmmetri-
C*ll CMS6

draw a line, AA ,
at right angles to it through any point G of
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Symmetri- it, and make CA equal to CA . For R, acting along the central

axis, substitute (by 561) %R at each end of AA . Then,

choosing this line AA as the arm of the couple, and calling it

/3

a, we have at one extremity of it, two forces, perpendiculara

to the central axis, and \R parallel to the central axis. Com

pounding these we get two forces, each equal to
\ a

through A and A respectively, perpendicular to AA
,
and

inclined to the plane through AA and the central axis, at

26r
angles on the two sides of it each equal to tan&quot;

1 =- .

J\&amp;gt;\JV

composi- 561. A very simple, but important, case, is that of any

parallel number of parallel forces acting at different points of a rigid

body.

Here, for equilibrium, obviously it is necessary and sufficient

that the algebraic sum of the forces be nil
;
and that the sum of

their moments about any two axes perpendicular to the com

mon direction of the forces be also nil.

This clearly implies ( 553) that the sum of their moments

about any axis whatever is nil.

To express the condition in rectangular coordinates, let

P
t ,
P

a ,
&c. be the forces; (x lt ylt z,}, (aja , y2 , z

a),
&c. points in

their lines of action; and I, m, n the direction cosines of a

line parallel to them all. The general equations [
552 (1), (2)]

of equilibrium of a rigid body become in this case,

ri$Py - m^Pz = 0, l$Pz - ri$Px = 0, m^Px

These equations are equivalent to but three independent equa

tions, which may be written as follows :

If the given forces are not in equilibrium a single force may
be founci which shall be their resultant. To prove this let,

if possible, a force R, in the direction (I, m, n), at a point
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(, y, z) equilibrate the given forces. By (1) we have, for Composi-

the conditions of equilibrium of R, P ,
P2 , &c., parallel

forces

# = 2P .............................. (2),

and

Equation (2) determines 7?, and equations (3) are the equa
tions of a straight line at any point of which a force equal to

JR
t applied in the direction

(I, m, ri),
will balance the given

system.

Suppose now the direction
(I, m, n) of the given forces to be

varied while the magnitude PJf
and one point (x } , yl ,

z
} )

in the

line of application, of each force is kept unchanged. We see by

(3) that one point (x, y, z) given by the equations

is common to the lines of the resultants.

The point (x, y, z] given by equations (4) is what is called

the centre of the system of parallel forces P
x
at (xv yv zj, P2

at (xv yv 2),
&c. : and we have the proposition that a force in

the line through this point parallel to the lines of the given

forces, equal to their sum, is their resultant. This proposition

is easily proved synthetically by taking the forces in any order

and finding the resultant of the first two, then the resultant of

this and the third, then of this second force, and so on. The line

of the first subsidiary resultant, for all varied directions of the

given forces, passes through one and tbe same point (that is the

point dividing the line joining the points of application of the

first two forces, into parts inversely as their magnitudes).

Similarly we see tbat the second subsidiary resultant passes

always through one determinate point : and so for the third,

and so on for any number of forces.

562. It is obvious, from the formulas of 230, that if masses Centre of

proportional to the forces be placed at the several points of
sr

application of these forces, the centre of inertia of these masses

will be the same point in the body as the centre of parallel



110 ABSTRACT DYNAMICS. [562.

Oentreof forces. Hence the reactions of the different parts of a rigid

body against acceleration in parallel lines are rigorously re

ducible to one force, acting at the centre of inertia. The same

is true approximately of the action of gravity on a rigid body
of small dimensions relatively to the earth, and hence the

centre of inertia is sometimes
( 230) called the Centre of

Gravity. But, except on a centrobaric body ( 534), gravity is

in general reducible not to a single force but to a force and

couple (
559 g) ;

and the force does not pass through a point

fixed relatively to the body in all the positions for which the

couple vanishes.

Parallel 563. In one case the proposition of 561, that the system
whose has a single resultant force, must be modified : that is the case

sum is zero, in which the algebraic sum of the given forces vanishes. In

this case the resultant is a couple whose plane is parallel to the

common direction of the forces. A good example of this case

is furnished by a magnetized mass of steel, of moderate dimen

sions, subject to the influence of the earth s magnetism. The

amounts of the so-called north and south magnetisms in each

element of the mass are equal, and are therefore subject to equal

and opposite forces, parallel in a rigorously uniform field of

force. Thus a compass-needle experiences from the earth s

magnetism sensibly a couple (or directive action), and is not

sensibly attracted or repelled as a whole.

conditions 564. If three forces, acting on a rigid body, produce equili-

brmmof brium, their directions must lie in one plane ;
and must all meet

forcel in one point, or be parallel. For the proof we may introduce

a consideration which will be very useful to us in investigations

connected with the statics of flexible bodies and fluids.

Physical If any forces, acting on a solid, or fluid body, produce

equilibrium, we may suppose any portions of the body to become

fixed, or rigid, or rigid and fixed, without destroying the equi

librium.

Applying this principle to the case above, suppose any two

points of the body, respectively in the lines of action of two of

the forces, to be fixed. The third force must have no momeat

axiom.
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about the line joining these points ;
in other words, its direction Physical

must pass through that line. As any two points in the lines of

action may be taken, it follows that the three forces are coplanar.

And three forces, in one plane, cannot equilibrate unless their

directions are parallel, or pass through a point.

565. It is easy, and useful, to consider various cases

stones.

equilibrium when no forces act on a rigid body but gravity the action

and the pressures, normal or tangential, between it and fixed

supports. Thus if one given point only of the body be fixed, it

is evident that the centre of inertia must be in the vertical line

through this point. For stable equilibrium the centre of inertia

need not be below the point of support ( 566).

566. An interesting case of equilibrium is suggested by Rocking

what are called Rocking Stones, where, whether by natural or

by artificial processes, the lower surface of a loose mass of rock

is worn into a convex or concave, or anticlastic form, while the

bed of rock on which it rests in equilibrium may be convex

or concave, or of an anticlastic form. A loaded sphere resting
on a spherical surface is a particular case.

Let 0, be the centres of curvature of the fixed, and rock

ing, bodies respectively, when in the position of

equilibrium. Take any two infinitely small,

equal arcs PQ, Pp ;
and at Q make the angle

O QR equal to POp. When, by displacement, Q
and p become the points in contact, QR will

evidently be vertical; and, if the centre of inertia

G, which must be in OPO when the movable

body is in its position of equilibrium, be to the

left of QR, the equilibrium will obviously be

stable. Hence, if it be below R, the equilibrium
is stable, and not unless.

Now if p and cr be the radii of curvature OP,
OP of the two surfaces, and the angle POp, the angle QOR

will be equal to
;
and we have in the triangle QOR ( 112)

RO : a :: sin 6 : sin &amp;lt;9 +

:: &amp;lt;r : cr + p (approximately).
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Rocking Hence PR = a- = -^-
;stones. a + p p +cr

and therefore, for stable equilibrium,

If the lower surface be plane, p is infinite, and the condition

becomes (as in 291)

If the lower surface be concave the sign of p must be changed,
and the condition becomes

which cannot be negative, since p must be numerically greater

than cr in this case.

Equiiibri-
567. If two points be fixed, the only motion of which the

MMuS?,
011*

system is capable is one of rotation about a fixed axis. The

centre of inertia must then be in the vertical plane passing

through those points. For stability it is necessary ( 566) that

the centre of inertia be below the line joining them.

on a nxed 568. If a rigid body rest on a frictional fixed surface there

will in general be only three points of contact; and the

body will be in stable equilibrium if the vertical line drawn

from its centre of inertia cuts the plane of these three points

within the triangle of which they form the corners. For if one

of these supports be removed, the body will obviously tend to

fall towards that support. Hence each of the three prevents

the body from rotating about the line joining the other two.

Thus, for instance, a body stands stably on an inclined plane (if

the friction be sufficient to prevent it from sliding down) when

the vertical line drawn through its centre of inertia falls within

the base, or area bounded by the shortest line which can be

drawn round the portion in contact with the plane. Hence a

body, which cannot stand on a horizontal plane, may stand on

an inclined plane.
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569. A curious theorem, due to Pappus, but commonly pappus
r

attributed to Guldinus, may be mentioned here, as it is em

ployed with advantage in some cases in rinding the centre of

gravity (or centre of inertia) of a body. It is obvious from

230. If a plane closed curve revolve through any angle about

an axis in its plane, the solid content of the surface generated is

equal to the product of the area of the curve into the length of the

path described by the centre of inertia of the area of the curve ;

and the area of the curved surface is equal to the product

of the length of the curve into the length of the path described

by the centre of inertia of the curve.

570. The general principles upon which forces of constraint

and friction are to be treated have been stated above
( 293,

329, 452). We add here a few examples for the sake of illus

trating the application of these principles to the equilibrium
of a rigid body in some of the more important practical cases

of constraint.

571. The application of statical principles to the Me- Mechanical

chanical Powers, or elementary machines, and to their combi- pc

nations, however complex, requires merely a statement of their

kinematical relations (as in 79, 85, 102, &c.) and an immediate

translation into Dynamics by Newton s principle ( 269) ;
or by

La,grange s Virtual Velocities
( 289, 290), with special atten

tion to the introduction of forces of friction as in 452. In no

case can this process involve further difficulties than are implied
in seeking the geometrical circumstances of any infinitely small

disturbance, and in the subsequent solution of the equations
to which the translation into dynamics leads us. We will not,

therefore, stop to discuss any of these questions ;
but will take

a few examples of no very great difficulty, before quitting for

a time this part of the subject. The principles already de

veloped will be of constant use to us in the remainder of the

work, which will furnish us with ever-recurring opportunities
of exemplifying their use and mode of application.

Let us begin with the case of the Balance, of which we

promised (431) to give an investigation.

VOL. II. 8
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a

Examples. 572. Ex. I. The centre of gravity of the beam must not

coincide with the knife-edge, or else the beam would rest in

differently in any position. We shall suppose, in the first place,

that the arms are not of equal length.

Let be the fulcrum, G
the centre of gravity of the

beam, M its mass
;
and sup

pose that with loads P and Q
in the pans the beam rests

(as drawn) in a position

making an angle with the

horizontal line.

Sensibility. Taking moments about 0, and, for convenience (see 220),

using gravitation measurement of the forces, we have

Q(AB cos 4- OA sin 0) +M . OG sin0 = P(ACcos 0- OA sin 6).

From this we find

P.AC-Q.AB
~(P+Q)OA+M.OG

If the arms be equal we have

(P-Q)AB~

Hence the Sensibility (431) is greater, (1) as the arms are

longer, (2) as the mass of the beam is less, (3) as the fulcrum

is nearer to the line joining the points of attachment of the

pans, (4) as the fulcrum is nearer to the centre of gravity of

the beam. If the fulcrum be in the line joining the points of

attachment of the pans, the sensibility is the same for the same

difference of loads in the pans.

Examples. Ex. II. Find the position of equilibrium of a rod AB
fr?c*foniesB resting on a frictionless horizontal rail D, its lower end pressing
constraint.

agajngt a frictionless vertical wall AC parallel to the rail.

The figure represents a vertical section through the rod,

which must evidently be in a plane perpendicular to the wall

and rail. The equilibrium is obviously unstable.
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R

The only forces acting are three, R the pressure of the wall Examples.

on the rod, horizontal
;
8 that of the rail on the rod, perpendi- fnctioniess

cular to the rod; W the weight
of the rod, acting vertically

downwards at its centre of
j

gravity. If the half-length of
^

the rod be a, and the distance j
of the rail from the wall b, -^

these are given and all that 1

is wanted to fix the position of

equilibrium is the angle, CAB, which the rod makes with the

wall. If we call it 6 we have AD = -
.

sin v

Resolving horizontally, E 8 cos (1),

vertically, F-sin0 =
(2).

Taking moments about A

8. AD- TF. a sin (9=0,

or S.b- W.asm2 6 = Q (3).

As there are only three unknown quantities R, 8, and 0, these

three equations contain the complete solution of the problem.

By (2) and (3)

sin
3 6 = -

,
which gives 6.

And by (2)

and by (1)

8
W

sin (9

0= JFcottf.

Ex. III. As an additional example, suppose the wall and Rod con-

rail to be frictional, and let
//.

be the coefficient of statical frictionai

friction for both. If the rod be placed in the position of equi

librium just investigated for the case of no friction, none will

be called into play, for there will be no tendency to motion to

be overcome. If the end A be brought lower and lower, more

82
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Examples, and more friction will be called into play to overcome the tend-
Rod con-
strained by ency of the rod to fall between the wall and the rail, until we
frictional

surfaces. come to a limiting position in which motion is about to com
mence. In that position the friction at A is p times the pres
sure on the wall, and acts upwards. That at D is

//,
times the

pressure on the rod, and acts in the direction DB. Putting
CAD = #

x
in this case, our three equations become

E
l
+ fufifj

sin
l

-
St cos

t
=0 ......... (1^,

W - pR, - S, sin 6
l
-

/uSf.cos O
l
= ......... (2j),

8J)
- Wa sin

2

X
=0 ......... (3,).

The directions of both the friction-forces passing through A,

neither appears in (3X).
This is why A is preferable to any

other point about which to take moments.

^

By eliminating Rl
and $

x
from these equations we get

1 - sin
3 e

i
= p sin

2

0, (2 cos
t

- ^ sin ^) ...... (4X),

from which
X

is to be found. Then 8
t

is known from (3J,

and JS. from either of the others.

If the end A be raised above the position of equilibrium

without friction, the tendency is for the rod to fall outside the

rail
;
more and more friction will be called into play, till the

position of the rod (#2) is such that the friction reaches its

greatest value, //,
times the pressure. We may thus find

another limiting position for stability; and in , any position

between these the rod is in equilibrium.

It is useful to observe that in this second case the direction

of each friction is the opposite to that in the former. Hence

equations of the first case, with the sign of p changed, serve

for the second case. Thus for
2, by (4J,

1 - sin
3

2
= -

IL sin
2

2 (2 cos
2
+ ft sin

2).
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Ex IV. A rectangular block lies on a frictional horizontal Examples.
_ Block on

frictional

^H^a****^,-^^ Plane-

zontal force whose line of action

is midway between two of the

vertical sides. Find the mag
nitude of the force when just

sufficient to produce motion,

and whether the motion will

be of the nature of sliding or

overturning.

If the force P is on the point of overturning the body, it is

evident that it will turn about the edge A, and therefore the

pressure, R, of the plane and the friction, 8, act at that edge.

Our statical conditions are, of course,

Wb = Pa,
.. i ;./--.. , ,

where b is half the length of the solid, and a the distance of P

from the plane. From these we have S -W.
a

Now S cannot exceed
,
whence we must not have -

greater than /x, if it is to be possible to upset the body by a

horizontal force in the line given for P.

A simple geometrical construction enables us to solve this

and similar problems, and will be seen at once to be merely a

graphic representation of the above process. Thus if we pro

duce the directions of the applied force, and of the weight, to

meet in H, and make at A the angle BAK whose co-tangent

is the coefficient of friction : there will be a tendency to upset,

or not, according a? H is above, or below, AK.

Ex. V. A mass, such as a gate, is supported by two rings, Mags sup.

A and B, which pass loosely round a vertical post. In equi-

librium, it is obvious that at A the part of the ring nearest the
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Examples,
Mass sup
ported by
rings pass
ing round a

rough post.

mass, and at B the part farthest from it, will be in contact with

, the post. The pressures exerted

on the rings, R and S, will evi

dently be in the directions AC,

CB, indicated in the diagram,

which, if no other force besides

gravity act on the mass, must

meet in the vertical through its

centre of inertia. And it is obvious that, however small be the

coefficient of friction, provided there be any force of friction at

all, equilibrium is always possible if the distance of the centre

of inertia from the post be great enough compared with the

distance between the rings.

When the mass is just about to slide down, the full amount

of friction is called into play, and the angles which R and $
make with the horizon are each equal to the sliding angle. If

the centre of inertia of the gate be farther from the post than

the intersection of two lines drawn from A, B, at the sliding

angles, it will hang stably held up by friction
;
not unless. A

force pushing upwards at Qv or downwards at Q2 ,
will remove

the tendency to fall
;
but a force upwards at Q3 ,

or downwards

at Q4 ,
will produce sliding.

A similar investigation is easily applied to the jamming of a

sliding piece or drawer, and to the determination of the proper

point of application of a force to move it.

573. Having thus briefly considered the equilibrium of a

rigid body, we propose, before entering upon the subject of the

deformation of elastic solids, to consider certain intermediate

cases, in each of which we make a particular assumption the

basis of the investigation, and thereby avoid a very considerable

amount of analytical difficulty.

Equilibrium
574. Very excellent examples of this kind are furnished by

the statics of a flexible and inextensible cord or chain, fixed

at both ends, and subject to the action of any forces. The

curve in which the chain hangs in any case may be called a

Catenary, although the term is usually restricted to the case of

a uniform chain acted on by gravity only.

sibie cord.

Catenary.
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575. We may consider separately the conditions of equi- Three

librium of each element; or we may apply the general condition

( 292) that the whole potential energy is a minimum, in the
tl011

case of any conservative system of forces
; or, especially when

gravity is the only external force, we may consider the equi
librium of a finite portion of the chain treated for the time as

a rigid body ( 564).

576. The first of these methods gives immediately the Equations of

three following equations of equilibrium, for the catenary in vSth refer
, ence to

general : tangent and
osculating
plane.

(1) The rate of variation of the tension per unit of length

along the cord is equal to the tangential component of the

applied force, per unit of length.

(2) The plane of curvature of the cord contains the normal

component of the applied force, and the centre of curvature is

on the opposite side of the arc from that towards which this

force acts.

(3) The amount of the curvature is equal to the normal

component of the applied force per unit of length at any point
divided by the tension of the cord at the same point.

The first of these is simply the equation of equilibrium of

an infinitely small element of the cord relatively to tangential
motion. The second and third express that the component of

the resultant of the tensions at the two ends of an infinitely

small arc, along the normal through its middle point, is directly

opposed and is equal to the normal applied force, and is equal
to the whole amount of it on the arc. For the plane of the

tangent lines in which those tensions act is ( 8) the plane
of curvature. And if be the angle between them (or the in

finitely small angle by which the angle between their positive

directions falls short of TT), and T the arithmetical mean of

their magnitudes, the component of their resultant along the

line bisecting the angle between their positive directions is

2Tsin J0, rigorously : or TO, since is infinitely small. Hence
TO = NSs, if Bs be the length of the arc, and NBs the whole
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,

amount of normal force applied to it. But (8 9)
= if p

with refer- p

tangent and ^e ^ne radius of curvature
;
and therefore

osculating
plane. J j\T

f)

==

~T

which is the equation stated in words (3) above.

integral for 577. From (1) of 576, we see that if the applied forces

on each particle of the cord constitute a conservative system,
and if the cord be homogeneous, the difference of the tensions

of the cord at any two points of it when hanging in equi

librium, is equal to the difference of the potential ( 485) of the

forces between the positions occupied by these points. Hence,

whatever be the position where the potential is reckoned zero,

the tension of the string at any point is equal to the potential

at the position occupied by it, with a constant added.

Cartesian 578. Instead of considering forces along and perpendicular

equilibrium, to the tangent, we may resolve all parallel to any fixed direc

tion: and we thus see that the component of applied force per

unit of length of the chain at any point of it, must be equal to

the rate of diminution per unit of length of the cord, of the

component of its tension parallel to the fixed line of this com

ponent. By choosing any three fixed rectangular directions we

thus have the three differential equations convenient for the

analytical treatment of catenaries by the method of rectangular

co-ordinates.

These equations are

(1),
ds \ ds

dz \

-T- 1
= (T

if s denote the length of the cord from any point of it, to a point

P
; x, y, z the rectangular co-ordinates of Pj X, Y, Z the com

ponents of the applied forces at P, per unit mass of the cord
;

&amp;lt;r

the mass of the cord per unit length at P
;
and T its tension at

this point.
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These equations afford analytical proofs of 576, (1), (2), and Cartesian

(3) thus : Multiplying the first by dx, the second by dy, and

the third by dz, adding and observing that

dx ,dx dy 7dy dz ..dz . , dx
2 + dy

2 + dz2

d-z- -\ =- a: h -y- a -7-
= *-=-- = ^?

ds ds ds ds ds ds ds
2

we have

dT= - a- (Xdx + Ydy + Zdz) = -&amp;lt;r (X^- + Y^- + Z^f] cfo...(2),
\ ctS ds ds/

which is (1) of 576. Again, eliminating dT and T, we have

dy dz dz dy\ fdz dx dx dz\ fdx dy dy dx\ .

d - d + Y -d - d+ Z d - d = ....... &quot; 3

which
( 9, 26) shows that the resultant of X, Y, Z is in the

osculating plane, and therefore is the analytical expression of

576 (2). Lastly, multiplying the first by d
,
the second by

d
-j- ,

and the third by d-j- ,
and adding, we find

ds ds

( dx dy dz\ ,

(
Xd + Yd -2- + Zd, -y- )

ds
ds ds d*

dx
-3-ds

dy\
2

/ dz\*
^r} +

(
d ~r )

ds) \ ds)

which is the analytical expression of 576 (3).

579. The same equations of equilibrium may be derived Method of

from the energy condition of equilibrium; analytically with
energy

ease by tbe methods of the calculus of variations.

Let V be the potential at
(x, y, z) of the applied forces per catenary

unit mass of the cord. The potential energy of any given length
of the cord, in any actual position between two given fixed points,

will be fVo-ds.

This integral, extended through the given length of the cord

between the given points, must be a minimum
;
while the in

definite integral, s, from one end up to the point (x, y, z) remains

unchanged by the variations in the positions of this point.

Hence, by the calculus of variations,

where X is a function of x, y, z to be eliminated.
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Catenary. Now o- is a function of s, and therefore as s does not vary
when x, y, z are changed into x+Sx, y+%y, z+8z, the co-ordinates

of the same particle of the chain in another position, we have

8
(o- F)

= 0-3V= - a- (XSx + ny + ZSz).

Using this, and

. _ dxd&x + dydfy -f dzd&z
oas--- .

ds

in the variational equation ;
and integrating the last term by

parts according to the usual rule
;
we have

e Slon of
whence finally

equilibrium.

which, if T be put for Fcr + X, are the same as the equations (1)

of 578.

Common 580. The form of the common catenary ( 574) may be of

course investigated from the differential equations ( 578) of

the catenary in general. It is convenient and instructive,

however, to work it out ah initio as an illustration of the third

method explained in 575.

Third method. The chain being in equilibrium, any arc of it

may be supposed to become rigid without disturbing the equi

librium. The only forces acting on this rigid body are the

tensions at its ends, and its weight. These forces being three

in number, must be in one plane ( 564), and hence, since one

of them is vertical, the whole curve lies in a vertical plane. In

this plane let a?
,
z

,
S
Q , ,,

z1} s^ belong to the two ends of the

arc which is supposed rigid, and T
Q ,
T

lt the tensions at those

points. Resolving horizontally we have

?d&
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Hence T~ is constant throughout the curve. Resolving verti-
cts

cally we have

the weight of unit of mass being now taken as the unit of force.

Hence if T be the tension at the lowest point, where
-j-

=
0,

8 = 0, and T the tension at any point (x, z) of the curve, we have

Hence

d dz

Integrating we have

and the constant is zero if we take the origin so that x = 0, when

= 0, i.e., where the chain is horizontal. .

Hence

,7~ / /J~\ 2 X
-*
T

(3),

w/&amp;lt;w 1 / T7 F \

whence ~j~$\*
~~

)&amp;gt;

and by integrating again

rn o_ x _a_ x

This may be written

X X

z=^a(e&quot;+i~
a
) (4),

the ordinary equation of the catenary, the axis of x being taken

T
at a distance a or - below the horizontal element of the chain.
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Catenary :

common.
The co-ordinates of that element are therefore a? = 0,

= - = a. The latter shows that

Relative
kinetic

problem

Kinetic

question
relative to

catenary.

or the tension at the lowest point of the chain (and therefore

also the horizontal component of the tension throughout) is the

weight of a length a of the chain.

Now, by (1), T=T ~ = az, by (4), and therefore

the tension at any point is equal to the weight of a portion of

the chain equal to the vertical ordinate at that point.

581. From 576 it follows immediately that if a material

particle of unit mass be carried along any catenary with a velo

city, s, equal to T, the numerical measure of the tension at any

point, the force upon it by which this is done is in the same

direction as the resultant of the applied force on the catenary at

this point, and is equal to the amount of this force per unit of

length, multiplied by T. For, denoting by S the tangential

and (as before) by N the normal component of the applied

force per unit of length at any point P of the catenary, we

have, by 576 (1), S for the rate of variation of s per unit

length, and therefore Ss for its variation per unit of time. That

is to say,

or
( 259) the tangential component force on the moving

particle is equal to ST. Again, by 576 (3),

/TT2 -2

NT= = -,
P P

or the centrifugal force of the moving particle in the circle of

curvature of its path, that is to say, the normal component of

the force on it, is equal to NT. And lastly, by (2) this force

is in the same direction as N. We see therefore that the

direction of the whole force on the moving particle is the

same as that of the resultant of S and N; and its magnitude
is T times the magnitude of this resultant.
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Or, by taking
;W _ 7,

yT
af

i

in the differential equation of 578, we have

question
relative to

catenary.

which proves the same conclusion.

When cr is constant, and the forces belong to a conservative

system, if V be the potential at any point of the cord, we have,

by 578 (2), T = &amp;lt;rV+C.

Hence, if U= J(crF+ &amp;lt;7)

8
,
these equations become

d^x = _d (y
== _dU tfz _ _dU_

dt* 7 dx dt
2

~

dy df~~~fa

The integrals of these equations which agree with the catenary,
are those only for which the energy constant is such that s

2= 2 U.

582. Thus we see how, from the more familiar problems Examples.

of the kinetics of a particle, we may immediately derive curious

cases of catenaries. For instance : a particle under the in

fluence of a constant force in parallel lines moves (Chap, vill.)

in a parabola with its axis vertical, with velocity at each point

equal to that generated by the force acting through a space

equal to its distance from the directrix. Hence, if z denote

this distance, and/ the constant force,

in the allied parabolic catenary ;
and the force on the catenary

is parallel to the axis, and is equal in amount per unit of

length, to

Hence if the force on the catenary be that of gravity, it must

have its axis vertical (its vertex downwards of course for stable

equilibrium) and its mass per unit length at any point must be

inversely as the square root of the distance of this point above

the directrix. From this it follows that the whole weight of

any arc of it is proportional to its horizontal projection. Or,
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Examples, again, as will be proved later with reference to the motions of

comets, a particle moves in a parabola under the influence of a

force towards a fixed point varying inversely as the square of

the distance from this point, if its velocity be that due to falling

from rest at an infinite distance. This velocity being . / ,
at

distance r, it follows, according to 581, that a cord will hang
in the same parabola, under the influence of a force towards

the same centre, and equal to

+ /* or /&quot;

r2 V r V 2r3

If, however, the length of the cord be varied between two

fixed points, the central force still following the same law, the

altered catenary will no longer be parabolic: but it will be

the path of a particle under the influence of a central force

equal to

since ( 581) we should have,

T= &amp;lt;rF+ G = -
j^/fcdr

+ C= ^ + C,

/2jLt
instead of A / .V r

catenary. 583. Or if the question be, to find what force towards a

problem, given fixed point, will cause a cord to hang in any given plane

curve with this point in its plane; it may be answered im

mediately from the solution of the corresponding problem in

&quot;

central forces.&quot;

But the general equations, 578, are always easily ap

plicable; as, for instance, to the following curious and interest

ing, but not practically useful, inverse case of the gravitation

catenary :

Catenary of Find the section, at each point, of a chain of uniform

strength, material, so that when its ends are fixed the tension at each point

may be proportional to its section at that point. Find also the

form of the Curve, called the Catenary of Uniform Strength, in

which it will hang.
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Here, as the only external force is gravity, the chain is in a Catenary of

vertical plane in which we may assume the horizontal axis of x strength.

to lie. If
fjt,

be the weight of the chain at the point (x, z)

reckoned per unit of length ;
our equations [

578 (1)] become

dsj ds \ ds
L

But, by hypothesis Too /x.
Let it be fyx. Hence, by the first

equation, if /n
be the value of /a at the lowest point

da

whence, by the second equation,

d fdz\ 1 ds

Ts

/dz \_lds
\dx)

~
b fa

d*z_l\ MS VI
dtf~b

|_ \dx) ]

Integrating we find

_, dz x
tan l = -

,dx b

no constant being required if we take the axis of x so as to touch

the curve at its lowest point. Integrating again we have

z . x- =
log COS

j-
,

no constant being added, if the origin be taken at the lowest

point. We may write the equation in the form

x
sec =- = e& .

b

From this form of the equation we see that the curve has vertical

asymptotes at a horizontal distance rrb from each other. Hence
irb is the greatest possible span, if the ends are on the same

level, or the horizontal projection of the greatest possible span
if they be not on the same level

;
b denoting the length of a

uniform rod or wire of the material equal in weight to the

tension of the catenary at any point, and equal in sectional area

to the sectional area of the catenary at the same point. The

greatest possible value of b is the &quot;

length modulus of rupture
&quot;

( 687, 688 below).
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Flexible 584. When a perfectly flexible string is stretched over a

smooth smooth surface, and acted on by no other force throughout its

length than the resistance of this surface, it will, when in

stable equilibrium, lie along a line of minimum length on the

surface, between any two of its points. For (564) its equili

brium can be neither disturbed nor rendered unstable by

placing staples over it, through which it is free to slip, at any
two points where it rests on the surface : and for the inter

mediate part the energy criterion of stable equilibrium is that

just stated.

There being no tangential force on the string in this case,

and the normal force upon it being along the normal to the

surface, its osculating plane ( 576) must cut the surface every

where at right angles. These considerations, easily translated

into pure geometry, establish the fundamental property of the

geodetic lines on any surface. The analytical investigations

of 578, 579, when adapted to the case of a chain of not given

length, stretched between two given points on a given smooth

surface, constitute the direct analytical demonstration of this

property.

In this case it is obvious that the tension of the string is

the same at every point, and the pressure of the surface

upon it is
[ 576 (3)] at each point proportional to ihe curvature

of the string.

On rough 585. No real surface being perfectly smooth, a cord or chain

may rest upon it when stretched over so great a length of a

geodetic on a convex rigid body as to be not of minimum length

between its extreme points : but practically, as in tying a cord

round a ball, for permanent security it is necessary, by staples

or otherwise, to constrain it from lateral slipping at successive

points near enough to one another to make each free portion a

true minimum on the surface.

Rope coiled 586. A very important practical case is supplied by the

cyiinde?
ugh

consideration of a rope wound round a rough cylinder. We

may suppose it to lie in a plane perpendicular to the axis, as we

thus simplify the question very considerably without sensibly
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injuring the utility of the solution. To simplify still further, we Rope coiled

shall suppose that no forces act on the rope, but tensions and
the reaction of the cylinder. In practice this is equivalent to

the supposition that the tensions and reactions are very large

compared with the weight of the rope or chain
; which, how

ever, is inadmissible in some important cases; especially such

as occur in the application of the principle to brakes for laying
submarine cables, to dynamometers, and to windlasses (or

capstans with horizontal axes).

If jRbe the normal reaction of the cylinder per unit of length
of the cord, at any point; T and T + ST the tensions at the

extremities of an arc Ss
;
SO the inclination of these lines

;
we

have, as in 576,

And the friction called into play is evidently equal to B T.

When the rope is about to slip, the friction has its greatest

value, and then

This gives, by integration,

showing that, for equal successive amounts of integral curva

ture
( 10), the tension of the rope augments in geometrical

progression. To give an idea of the magnitudes involved,

suppose fji= 25, 6= ZTT, then

T= T 6
5 &quot; = 4-81T

Q approximately.

Hence if the rope be wound three times round the post or

cylinder the ratio of the tensions of its ends, when motion is

about to commence, is

(4-81)
3

: 1 or about 111 : 1.

Thus we see how, by the aid of friction, one man may easily
check the motion of a large ship, by the simple expedient of

coiling a rope a few times round a post. This application of

friction is of great importance in many other uses, especially
for dynamometers.

VOL. II. 9
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Rope coiled 587. With the aid of the preceding investigations, the

cylinder, student may easily work out for himself the formulae expressing
the solution of the general problem of a cord under the action

of any forces, and constrained by a rough surface
; they are

not of sufficient importance or interest to find a place here.

Eiasticwire. 588. An elongated body of elastic material, which for

brevity we shall generally call a Wire, bent or twisted to any

ftbre^bar, degree, subject only to the condition that the radius of curva-

o?
d
beam.

ma&amp;gt; ture and the reciprocal of the twist ( 119) are everywhere

very great in comparison with the greatest transverse dimen

sion, presents a case in which, as we shall see, the solution of

the general equations for the equilibrium of an elastic solid is

either obtainable in finite terms, or is reducible to compara

tively easy questions agreeing in mathematical conditions with

some of the most elementary problems of hydrokinetics, elec

tricity, and thermal conduction. And it is only for the deter

mination of certain constants depending on the section of the

wire and the elastic quality of its substance, which measure its

flexural and torsional rigidity, that the solutions of these pro

blems are required. When the constants of flexure and torsion

are known, as we shall now suppose them to be, whether from

theoretical calculation or experiment, the investigation of the

form and twist of any length of the wire, under the influence

of any forces which do not produce a violation of the condition

stated above, becomes a subject of mathematical analysis in

volving only such principles and formulae as those that con

stitute the theory of curvature
(

5 13) and twist
(

119

123) in geometry or kinematics.

589. Before entering on the general theory of1 elastic solids,

we shall therefore, according to the plan proposed in 573,

examine the dynamic properties and investigate the conditions

of equilibrium of a perfectly elastic wire, without admitting

any other condition or limitation of the circumstances than

what is stated in 588, and without assuming any special

quality of isotropy, or of crystalline, fibrous or laminated struc

ture in the substance. The following short geometrical digres

sion is a convenient preliminary :
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590. The geometrical composition of curvatures with one composi-

another, or with rates of twist, is obvious from the definition soiutfon o?

and principles regarding curvature given above in 5 13 in a curved

and twist in 119 123, and from the composition of angular
velocities explained in 96. Thus if one line, @P, of a rigid

body be always held parallel to the tangent, PT, at a point P
moving with unit velocity along a curve, whether plane or

tortuous, it will have, round an axis perpendicular to 3 and

to the radius of curvature (that is to say, perpendicular to the

osculating plane), an angular velocity numerically equal to the

curvature. The body may besides be made to rotate with any

angular velocity round ST. Thus, for instance, if a line of it,

.^l, be kept always parallel to a transverse
( 120) PA, the

component angular velocity of the rigid body round @ will

at every instant be equal to the &quot; rate of twist
&quot;

( 120) of the

transverse round the tangent to the curve-. Again, the angular

velocity round ^ may be resolved into components round

two lines 3St, H, perpendicular to one another and to ^ ;

and the whole curvature of the curve may be resolved accord

ingly into two component curvatures in planes perpendicular
to those two lines respectively. The amounts of these com

ponent curvatures are of course equal to the whole curvature

multiplied by the cosines of the respective inclinations of the

osculating plane to these planes. And it is clear that each

component curvature is simply the curvature of the projection

of the actual curve on its plane*.

591. Besides showing how the constants of flexural and

torsional rigidity are to be determined theoretically from the

form of the transverse section of the wire, and the proper data

as to the elastic qualities of its substance, the complete theory

simply indicates that, provided the conditional limit (- 588)
of deformation is not exceeded, the following laws will be

obeyed by the wire under stress :

* The curvature of the projection of a curve on a plane inclined at an

angle a to the osculating plane, is
(!//&amp;gt;)

cos a if the plane be parallel to the

tangent; and
l//&amp;gt;cos

2 o if it be parallel to the principal normal (or radius of

absolute curvature). There is no difficulty in proving either of these expres
sions.

92
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Laws ot Let the whole mutual action between the parts of the
flexure and
torsion. wire O11 the two sides of the cross section at any point (being of

course the action of the matter infinitely near this plane on one

side, upon the matter infinitely near it on the other side), be

reduced to a single force through any point of the section and a

single couple. Then

I. The twist and curvature of the wire in the neighbourhood
of this section are independent of the force, and depend solely

on the couple.

II. The curvatures and rates of twist producible by any
several couples separately, constitute, if geometrically com

pounded, the curvature and rate of twist which are actually

produced by a mutual action equal to the resultant of those

couples.

592. It may be added, although not necessary for our

present purpose, that there is one determinate point in the

cross section such that if it be chosen as the point to which

the forces are transferred, a higher order of approximation is

obtained for the fulfilment of these laws than if any other

point of the section be taken. That point, which in the case

of a wire of substance uniform through its cross section is the

centre of inertia of the area of the section, we shall generally

call the elastic centre, or the centre of elasticity, of the section.

It has also the following important property: The line of

elastic centres, or, as we shall call it, the elastic central line,

remains sensibly unchanged in length to whatever stress within

our conditional limits
( 588) the wire be subjected. The elon

gation or contraction produced by the neglected resultant force,

if this is in such a direction as to produce any, will cause the

line of rigorously no elongation to deviate only infinitesimally

from the elastic central line, in any part of the wire finitely

curved. It will, however, clearly cause there to be no line of

rigorously unchanged length, in any straight part of the wire :

but as the whole elongation would be infinitesimal in compari-

sion with the effective actions with which we are concerned,

this case constitutes no exception to the preceding statement.
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593. Considering now a wire of uniform constitution and warping of

figure throughout, and naturally straight; let any two planes SonTy
se

of reference perpendicular to one another through its elastic flexure, in-

central line when straight, cut the normal section through
P in the lines PK and PL. These two lines (supposed to

belong to the substance, and move with it) will remain in

finitely nearly at right angles to one another, and to the tan

gent, PT, to the central line, however the wire may be bent

or twisted within the conditional limits. Let K and X be the
flexure and

component curvatures ( 590) in the two planes perpendicular
torsion.

to PK and PL through PT, and let r be the twist ( 120) of

the wire at P. We have just seen
( 590) that if P be moved

at a unit rate along the curve, a rigid body with three rectan

gular axes of reference 3t, ^t, (&*& kept always parallel to

PK, PL, PT, will have angular velocities K, X, r round those

axes respectively. Hence if the point P and the lines PT,

PK, PL be at rest while the wire is bent and twisted from its

unstrained to its actual condition, the lines of reference PK ,

P L, P T through any point P infinitely near P, will ex

perience a rotation compounded of K . PP round P K, X . PP
round P L, and r . PP round P T .

594. Considering now the elastic forces called into action. Potential

. . energy of

we see that if these constitute a conservative svstem, the work elastic force
in bent and

required to bend and twist any part of the wire from its un- twisted

strained to its actual condition, depends solely on its figure in

these two conditions. Hence if w . PP denote the amount of

this work, for the infinitely small length PP of the rod, w
must be a function of K, X, r

;
and therefore if K, L, T denote

the components of the couple-resultant of all the forces which

must act on the section through P to hold the part PP in its

strained state, it follows, from 240, 272, 274, that

STw ............ (1),

where SKw, B^w, $rw denote the augmentations of w due respec

tively to infinitely small augmentations &/c, SX, ST, of K, X, r.

595. Now however much the shape of any finite length of

the wire may be changed, the condition of 588 requires
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potential

twisted

clearly that the changes of shape in each infinitely small part,

-that is to say, the strain ( 154) of the substance, shall be

everywhere very small (infinitely small in order that the theory

may be rigorously applicable). Hence the principle of super

position [ 591, ii.] shows that if K, A, r be each increased or

diminished in one ratio, K, L, T will be each increased or

diminished in the same ratio: and consequently w in the

duplicate ratio, since the angle through which each couple acts

is altered in the same ratio as the amount of the couple; or, in

algebraic language, w is a homogeneous quadratic function of

Compo-
nents of

restituent

couple.

Thus if A, B, C, a, b, c denote six constants, we have

Hence, by 594(1),

(2).

(3).

By the known reduction of the homogeneous quadratic function,

these expressions may of course be reduced to the following

simple forms :

where ^, S2 ,
$a are linear functions of K, A, T. And if these

functions are restricted to being the expressions for the com

ponents round three rectangular axes, of the rotations K, A, T

viewed as angular velocities round the axes PK, PL, PT, the

positions of the new axes, PQlt PQ2 , PQ3 ,
and the values of A lt

A 2 ,
A 3

are determinate; the latter being the roots of the deter

minant cubic
[

181 (11)] founded on (A, B, C, a, b, c).
Hence

we conclude that

Three prin- 596. There are in general three determinate rectangulai

mafaxe?
r

directions, PQV PQZ , PQS , through any point P of the middle

and flexure, line of a wire, such that if opposite couples be applied to any
two parts of the wire in planes perpendicular to any one of

them, every intermediate part will experience rotation in a

principal plane parallel to those of the balanced couples. The moments



596.J STATICS. 135

of the couples required to produce unit rate of rotation round torsicn-

these three axes are called the principal torsion-flexure rigidities rigidities.

of the wire. They are the elements denoted by Av A 2 ,
A

s
in

the preceding analysis.

597. If the rigid body imagined in 593 have moments of

inertia equal to Av A^ A
3
round three principal axes through

O kept always parallel to the principal torsion-flexure axes

through P, while P moves at unit rate along the wire, its

moment of momentum round any axis
( 281, 236) will be

equal to the moment of the component torsion-flexure couple

round the parallel axis through P.

598. The form assumed by the wire when balanced under Three prin-

the influence of couples round one of the three principal axes mai spirals.

is of course a uniform helix having a line parallel to it for axis,

and lying on a cylinder whose radius is determined by the

condition that the whole rotation of one end of the wire from

its unstrained position, the other end being held fixed, is equal

to the amount due to the couple appHed.

Let I be the length of the wire from one end, E, held fixed, to

the other end, E ,
where a couple, L, is applied in a plane per

pendicular to the principal axis PQ l through any point of the

wire. The rotation being [
595 (4)] at the rate

&amp;gt; Per un^

of length, amouncs on the whole to I . This therefore is the
A

\

angular space occupied by the helix on the cylinder on which it

lies. Hence if r denote the radius of this cylinder, and i
t
the

inclination of the helix to its axis (being the inclination of PQl

to the length of the wire), we have

LI .r=l sin ^

.4, sin -i,

whence r=-- ......................... (5)
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which&quot;
599. &quot; n ^e mos^ important practical cases, as we shall

tiafifne
e

is~
see ^ater

j
those namely in which the substance is either

&quot;

iso-

ajriso?
al

tropic,&quot;
as is the case sensibly with common metallic wires,

torsion.
orj as in roc[s or beams Of fibrous or crystalline structure, with

an axis of elastic symmetry along the length of the piece, one

of the three normal axes of torsion and flexure coincides

with the length of the wire, and the two others are perpendi
cular to it; the first being an axis of pure torsion, and the two

others axes of pure flexure. Thus opposing couples round the

axis of the wire twist it simply without bending it
;
and op

posing couples in either of the two principal planes of flexure,

bend it into a circle. The unbent straight line of the wire,

and the circular arcs into which it is bent by couples in the

two principal planes of flexure, are what the three principal

spirals of the general problem become in this case.

A simple proof that the twist must be uniform ( 123) is

found by supposing the whole wire to turn round its curved

axis; and remarking that the work done by a couple at one

end must be equal to that undone at the other.

case of 600. In the more particular case in which two principal

SyfnaVi rigidities against flexure are equal, every plane through the
s

length of the wire is a principal plane of flexure, and the

rigidity against flexure is equal in all. This is clearly the case

with a common round wire, or rod: or with one of square

section. It will be shown later to be the case for a rod of

isotropic material and of any form of normal section which is

&quot;kinetically symmetrical,&quot; 285, round all axes in its plane

through its centre of inertia.

601. In this case, if one end of the rod or wire be held

fixed, and a couple be applied in any plane to the other end,

a uniform spiral (or helical) form will be produced round an

axis perpendicular to the plane of the couple. The lines of the

substance parallel to the axis of the spiral are not, however,

parallel to their original positions, as
( 598) in each of the

three principal spirals of the general problem: and lines

traced along the surface of the wire parallel to its length

when straight, become as it were secondary spirals, circling
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round the main spiral formed by the central line of the Case of

i vi eQual flexi-

deformed wire; instead of being all spirals of equal step, as in biiityinaii

each one of the principal spirals of the general problem. Lastly,

in the present case, if we suppose the normal section of the

wire to be circular, and trace uniform spirals along its surface

when deformed in the manner supposed (two of which, for

instance, are the lines along which it is touched by the in

scribed and the circumscribed cylinder), these lines do not

become straight, but become spirals laid on as it were round

the wire, when it is allowed to take its natural straight and

untwisted condition.

Let, in 595, PQ l
coincide with the central line of the wire,

and let A
l
= A

,
and A

2
= A

3
= B

;
so that A measures the rigidity

of torsion and B that of flexure. One end of the wire being
held fixed, let a couple G be applied to the other end, round an

axis inclined at an angle 6 to the length. The rates of twist ami

of flexure each per unit of length, according to (4) of 595,

will be

G cos G sin

~~A~&amp;gt;

a
~~B~

respectively. The latter being ( 9) the same thing as the

curvature, arid the inclination of the spiral to its axis being 6, it

follows
( 126, or 590, footnote) that

S B &
is the radius of

curvature of its projection on a plane perpendicular to this line,

that is to say, the radius of the cylinder on which the spiral lies.

602. A wire of equal flexibility in all directions may clearly wire

be held in any specified spiral form, and twisted to any stated any given
, , . ,. , , spiral and

degree, by a determinate force and couple applied at one end, twist,

the other end being held fixed. The direction of the force

must be parallel to the axis of the spiral, and, with the couple,

must constitute a system of which this line is ( 559) the

central axis: since otherwise there could not be the same

system of balancing forces in every normal section of the

spiral. All this may be seen clearly by supposing the wire to

be first brought by any means to the specified condition of

strain; then to have rigid planes rigidly attached to its two

ends perpendicular to its axis, and these planes to be rigidly
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wire connected by a bar lying in this line. The spiral wire now

Tiny given left to itself cannot but be in equilibrium: although if it be

twist. too long (according to its form and degree of twist) the equili

brium may be unstable. The force along the central axis, and
the couple, are to be determined by the condition that, when
the force is transferred after Poinsot s manner to the elastic

centre of any normal section, they give two couples together

equivalent to the elastic couples of flexure and torsion.

Let a be the inclination of the spiral to the plane perpendicular

to its axis ;
r the radius of the cylinder on which it lies

;
r the

rate of twist given to the wire in its spiral form. The curvature

is
( 126) equal to

; and its plane, at any point of the

spiral, being the plane of the tangent to the spiral and the

diameter of the cylinder through that point, is inclined at the

angle a to the plane perpendicular to the axis. Hence the com

ponents in this plane, and in the plane through the axis of the

cylinder of the nexural couple, are respectively

B cos
2 a B cos

2 a .

cos a, ana sin a.
r r

Also, the components of the torsional couple, in the same planes,

are A T sin a, and AT cos a.

Hence, for equilibrium,
J5cos

2 a . v

G = cos a + AT Sin a

Rr = sin a - AT cos a
r

which give explicitly the values, G and R, of the couple and force

required, the latter being reckoned as positive when its direction

is such as to pull out the spiral, or when the ends of the rigid bar

supposed above are pressed inwards by the plates attached to the

ends of the spiral.

If we make R = 0, we fall back on the case considered previ

ously ( 601). If, on the other hand, we make = 0, we have

IB cos
3
a

r A sin q

J?cos
2 q AT

and H =
2o

~~

r sin a r cos a

from which we conclude that
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603 A wire of equal flexibility in all directions may be Twist de-
n J J termmedfor

held in any stated spiral form by a simple force along its axis ^jjjg
1^6

between rigid pieces rigidly attached to its two ends, provided
sin&le force.

that, along with its spiral form, a certain degree of twist be

given to it. The force is determined by the condition that its

moment round the perpendicular through any point of the

spiral to its osculating plane at that point, must be equal

and opposite to the elastic unbending couple. The degree of

twist is that due (by the simple equation of torsion) to the

moment of the force thus determined, round the tangent at

any point of the spiral. The direction of the force being,

according to the preceding condition, such as to press together

the ends of the spiral, the direction of the twist in the wire is

opposite to that of the tortuosity (9) of its central curve.

604. The principles and formulas
( 598, 603) with which spiral

we have just been occupied are immediately applicable to the
Sf

theory of spiral springs ;
and we shall therefore make a short

digression on this curious and important practical subject before

completing our investigation of elastic curves.

A common spiral spring consists of a uniform wire shaped

permanently to have, when unstrained, the form of a regular

helix, with the principal axes of flexure and torsion everywhere

similarly situated relatively to the curve. When used in the

proper manner, it is acted on, through arms or plates rigidly at

tached to its ends, by forces such that its form as altered by them
is still a regular helix. This condition is obviously fulfilled if

(one terminal being held fixed) an infinitely small force and

infinitely small couple be applied to the other terminal along
the axis and in a plane perpendicular to it. and if the force and

couple be increased to any degree, and always kept along and

in the plane perpendicular to the axis of the altered spiral. It

would, however, introduce useless complication to work out the

details of the problem except for the case ( 599) in which one

of the principal axes coincides with the tangent to the central

line, and is therefore an axis of pure torsion; as spiral springs

in practice always belong to this case. On the other hand, a very

interesting complication occurs if we suppose (a thing easily
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realized in practice, though to be avoided if merely a good

spring is desired) the normal section of the wire to be of such a

figure, and so situated relatively to the spiral, that the planes
of greatest and least flexuraljigidity are oblique to the tangent

plane of the cylinder. Such a spring when acted on in the

regular manner at its ends must experience a certain degree of

turning through its whole length round its elastic central curve

in order that the flexural couple developed may be, as we shall

immediately see it must be, precisely in the osculating plane of

the altered spiral. But all that is interesting in this very

curious effect will be illustrated later
( 624) in full detail in the

case of an open circular arc altered by a couple in its own plane,

into a circular arc of greater or less radius
;
and for brevity

and simplicity we shall confine the detailed investigation of

spiral springs on which we now enter, to the cases in which

either the wire is of equal flexural rigidity in all directions, or

the two principal planes of (greatest and least or least and

greatest) flexural rigidity coincide respectively with the tangent

plane to the cylinder, and the normal plane touching the central

curve of the wire, at any point.

605. The axial force, on the moveable terminal of the spring,

transferred according to Poinsot s method
( 555) to any point

in the elastic central curve, gives a couple in the plane through

that point and the axis of the spiral. The resultant of this and

the couple which we suppose applied to the terminal in the

plane perpendicular to the axis of the spiral is the effective

bending and twisting couple : and as it is in a plane perpen

dicular to the tangent plane to the cylinder, the component of

it to which bending is due must be also perpendicular to this

plane, and therefore is in the osculating plane of the spiral.

This component couple therefore simply maintains a curvature

different from the natural curvature of the wire, and the other,

that is, the couple in the plane normal to the central curve,

pure torsion. The equations of equilibrium merely express

this in mathematical language.

Resolving as before
( 602) the flexural and the torsional

couples each into components in the plane.3 through the axis of
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the spiral, and perpendicular to it, we have springs.

...(7),

._ /COS
2 a cos

2 an\ , . ,

G- = B( }
cos a 4- AT Sin a

,

V T T J\ o

^ /cos&quot; a cos
2 aA , A ,-Rr = B(- 2Jsm

a-^rcosa
,

cos a sin a cos a sin a
and, by 126, r=-

7 o J

where J. denotes the torsional rigidity of the wire, and B its

flexural rigidity in the osculating plane of the spiral; a the in

clination, and r the radius of the cylinder, of the spiral when

unstrained; a and r the same parameters of the spiral when

under the influence of the axial force R and couple G ;
and T the

degree of twist in the change from the unstrained to the strained

condition.

These equations give explicitly the force and couple required

to produce any stated change in the spiral ;
or if the force and

couple are given they determine a, r the parameters of the

altered curve.

As it is chiefly the external action of the spring that we are

concerned with in practical applications, let the parameters a, r

of the spiral be eliminated by the following assumptions :

I cos a 1
x = I sin a, (j&amp;gt;

=

/ W.
I COS a

x =lsma
, e

= -

o J

where I denotes the length of the wire, &amp;lt; the angle between

planes through the two ends of the spiral, and its axis, and x the

distance between planes through the ends and perpendicular to

the axis in the strained condition; and, similarly, &amp;lt;

,
x for the

unstrained condition
;

so that we may regard (&amp;lt;, x) and
(&amp;lt;

,
x )

as the co-ordinates of the movable terminal relatively to the

fixed in the two conditions of the spring. Thus the preceding

equations become



142 ABSTRACT DYNAMICS. [605.

Spiral Here we see that
Ld&amp;lt;$&amp;gt;

+ Rdx is the differential of a function of

springs.
the twQ independent variables, x, &amp;lt;. Thus if we denote this

function by E, we have

* = if

a conclusion which might have been inferred at once from the

general principle of energy, thus :

606. The potential energy of the strained spring is easily

seen from 595 (4), above, to be

if A denote the torsional rigidity, B the flexural rigidity in the

plane of curvature, -or and OT
O
the strained and unstrained cur

vatures, and r the torsion of the wire in the strained condition,

the torsion being reckoned as zero in the unstrained condition.

The axial force, and the couple, required to hold the spring to

any given length reckoned along the axis of the spiral, and to

any given angle between planes through its ends and the axes,

are of course ( 272) equal to the rates of variation of the

potential energy, per unit of variation of these co-ordinates

respectively. It must be carefully remarked, however, that, if

the terminal rigidly attached to one end of the spring be

held fast so as to fix the tangent at this end, and the motion of

the other terminal be so regulated as to keep the figure of the

intermediate spring always truly spiral, this motion will be

somewhat complicated ;
as the radius of the cylinder, the in

clination of the axis of the spiral to the fixed direction of the

tangent at the fixed end, and the position of the point in the

axis in which it is cut by the plane perpendicular to it through

the fixed end of the spring, all vary as the spring changes in

figure. The effective components of any infinitely small motion

of the moveable terminal are its component translation along,

and rotation round, the instantaneous position of the axis of

the spiral (two degrees of freedom), along with which it will

generally have an infinitely small translation in some direction
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and rotation round some line, each perpendicular to this axis, Spiral

to be determined from the two degrees of arbitrary motion, by
SF

the condition that the curve remains a true spiral.

607. In the practical use of spiral springs, this condition is

not rigorously fulfilled : but, instead, either of two plans is

generally followed : (1) Force, without any couple, is applied

pulling out or pressing together two definite points of the two

terminals, each as nearly as may be in the axis of the unstrained

spiral ;
or (2) One terminal being held fixed, the other is

allowed to slide, without any turning, in a fixed direction, being
as nearly as may be the direction of the axis of the spiral when

unstrained. The preceding investigation is applicable to the

infinitely small displacement in either case : the couple being

put equal to zero for case (1), and the instantaneous rotatory

motion round the axis of the spiral equal to zero for case (2).

For infinitely small displacements let &amp;lt;

=
&amp;lt;

-4-
S&amp;lt;,

and

x-x
Q
+ Bx

}
in (10), so that now

dE_ _dfi
~dSx

Then, retaining only terms of the lowest degree relative to Sx

and S&amp;lt; in ea h formula, and writing x and &amp;lt; instead of x and

&amp;lt;f&amp;gt; ,
we have

2l
3

, .

1 (/ v2 \ \

(11).

L = -
3 {(4

- 5) x^x + [ (I

s - x2

)
+ Ax2

] S&amp;lt;/&amp;gt;}

Example 1. For a spiral of 45 inclination we have

and the formulae become

-)
(12).

L =
$j-[(A -)x+(A +

)
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springs

Spiral
spring of

infinitely
small in
clination :

^ careful study of this case, illustrated if necessary by a model

easily made out of ordinary iron or steel wire, will be found very
instructive.

Example 2. Let - be very small. Neglecting, therefore, its

7 /?

square, we have &amp;lt;

= -, and L = yT i

1 A

= 8 -
; and R=~-

9r IT*

The first of these is simply the equation of direct flexure
( 595).

The interpretation of the second is as follows :

608. In a spiral spring of infinitely small inclination to the

plane perpendicular to its axis, the displacement produced in

the moveable terminal by a force applied to it in the axis of the

spiral is a simple rectilineal translation in the direction of the

axis, and is equal to the length of the circular arc through
which an equal force carries one end of a rigid arm or crank

equal in length to the radius of the cylinder, attached per

pendicularly to one end of the wire of the spring supposed

straightened and held with the other end absolutely fixed, and

the end which bears the crank free to turn in a collar. This

statement is due to J. Thomson*, who showed that in pulling
out a spiral spring of infinitely small inclination the action

exercised and the elastic quality used are the same as in a

virtually a torsion-balance with the same wire straightened ( 433). This

balance. theory is, as he proved experimentally, sufficiently approximate
for most practical applications; spiral springs, as commonly
made and used, being of very small inclination. There is no

difficulty in finding the requisite correction, for the actual incli

nation in any case, from the preceding formulae. The funda

mental principle that spiral springs act chiefly by torsion seems

to have been first discovered by Binet in 1814-)-. ,

In continuation of 590, 593, 597, we now returnElastic 609.

mitting to the case of a uniform wire straight and untwisted (that is,
force and
couple. cylindrical or prismatic) when free from stress. Let us suppose

one end to be held fixed in a given direction, and no force

from without to influence the wire except that transmitted to it

by a rigid frame attached to its other end and acted on by a

* Camb. and Dub. Maih. Jour. 1848.

t St Venant, Comptes Eendus. Sept. 1864.
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force, R, in a given line, AS, and a couple, 6r, in a plane per

pendicular to this line. The form and twist it will have when

in equilibrium are determined by the condition that the torsion Kirchhoffn

and flexure at any point, P, of its length are those due to the

couple 6r compounded with the couple obtained by bringing R
to P. It follows that the rigid body of 597 will move

exactly as there specified if it be set in motion with the proper

angular velocity, and, being held fixed, a force equal and

parallel to R be applied at a point dEl, fixed relatively to the

body at unit distance from
&amp;lt;!,

in the line @T.

This beautiful theorem was discovered by Kirchhoff; to whom
also the first thoroughly general investigation of the equations

of equilibrium and motion of an elastic wire is due *.

To prove the theorem, it is only necessary to remark that

the rate of change of the moment of R round any line through

P, kept parallel to itself as P moves along the curve, in the

elastic problem, is equal simply to the moment round the parallel

line through &amp;lt;&,
of R at (& in the kinetic analogue. It may be

added that G of the elastic problem corresponds to the constant

moment of momentum round the line through dD parallel to

the constant direction of R in the kinetic analogue.

610. The comparison thus established between the static

problem of the bending and twisting of a wire, and the kinetic

problem of the rotation of a rigid body, affords highly interest

ing illustrations, and, as it were, graphic representations, of the

circumstances of either by aid of the other
;
the usefulness of

which in promoting a thorough mental appropriation of both

must be felt by every student who values rather the physical

subject than the mechanical process of working through mathe

matical expressions, to which so many minds able for better

things in science have unhappily been devoted of late years.

When particularly occupied with the kinetic problem in

chap. IX., we shall have occasion to examine the rotations

corresponding to the spirals of 601 603, and to point out

also the general character of the elastic curves corresponding
to some of the less simple cases of rotatory motion.

* Grille s Journal, 1859, Ueber das Gleichgewicht und die Bewegung
unendlich diinnen elastischen Stabes.

VOL. II. 10
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pendSum
^ ^or ^Q Present we confine ourselves to one example,

ei

n
astic

ane whicn
&amp;gt;

so far as tne comparison between the static and kinetic
curve.

problems is concerned, is the simplest of all the Elastic Curve

of James Bernoulli, and the common pendulum. A uniform

straight wire, either equally flexible in all planes through its

length, or having its directions of maximum and minimum
flexural rigidit}

7
&quot;

in two planes through its whole length, is acted

on by a force and couple in one of these planes, applied either

directly to one end, or by means of an arm rigidly attached to

it, the other end being held fast. The force and couple may,
of course ( 558), be reduced to a single force, the extreme case

of a couple being mathematically included as an infinitely small

force at an infinitely great distance. To avoid any restriction

of the problem, we must suppose this force applied to an arm

rigidly attached to the wire, although in any case in which the

line of the force cuts the wire, the force may be applied directly

at the point of intersection, without altering the circumstances

of the wire between this point and the fixed end. The wire

will, in these circumstances, be bent into a curve lying through
out in the plane through its fixed end and the line of the force,

and ( 599) its curvatures at different points will, as was first

shown by James Bernoulli, be simply as their distances from

this line. The curve fulfilling this condition has clearly just

two independent parameters, of which one is conveniently re

garded as the mean proportional, a, between the radius of

curvature at any point and its distance from the line of force,

and the other, the maximum distance, b, of the wire from the

line of force. By choosing any value for each of these para-

Graphic meters it is easy to trace the corresponding curve with a very

Xfofdas- high approximation to accuracy, by commencing with a small

tranS- circular arc touching at one extremity a straight line at the

one
g
piane.

m
given maximum distance from the line of force, and continuing

by small circular arcs, with the proper increasing radii, accord

ing to the diminishing distances of their middle points from

the line of force. The annexed diagrams are, however, not

so drawn
;

but are simply traced from the forms actually

assumed by a flat steel spring, of small enough breadth not to

be much disturbed by tortuosity in the cases in which different
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parts of it cross one another. The mode of application of the Equation of

force is sufficiently explained by the indications in theJ J

diagram.

Let the line of force be the axis of x, and let p be the radius

of curvature at any point (x, y) of the curve. The dynamical
condition stated above becomes

(1),

where B denotes the flexural rigidity, T the tension of the cord,

and a a linear parameter of the curve depending on these

elements. Hence, by the ordinary formula for
p&quot;

1

,

dx*

Multiplying by 2dy and integrating, we have

and finally,

-f__V-W
...(4V,74a4 -(72 + 2C- 4 2

.-

which is the equation of the curve expressed in terms of an

elliptic integral.

If, in the first integral, (3), we put
-~ =

0, we find
UX

y = + (C + 2,y .............................. (5),

the upper sign within the bracket giving points of maximum, and
the lower, points, if any real, of minimum distance from the axis.

Hence there are points of equal maximum distance from the line of

force on its two sides, but no real minima when C &amp;lt; 2aa
;
which

therefore comprehends the cases of diagrams 1 ... 5. But there are

real minima as well as maxima when G &amp;gt; 2a2

,
which is therefore

the case of diagram 7. In this case it may be remarked that

the analytical equations comprehend two equal and similar de-

102
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Equation of
the plane
elastic
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tached curves symmetrically situated on the two sides of the line

offeree; of which one only is shown in the diagram. elastic

curve.

The intermediate case, C = 2a2

,
is that of diagram 6. For it

the final integral degrades into a logarithmic form, as follows :

x =

or, with the integrations effected, and the constant assigned to

make the axis of y be that of symmetry,

a = -(4a
2

-3/
2

)* + alog
v *LL

(6).

This equation, when the radical is taken with the sign indicated,

represents the branch proceeding from the vertex, first to the

negative side of the axis of ?/, crossing it at the double point, and

going to infinity towards the positive axis of x as an asymptote.

The other branch is represented by the same equation with the

sign of the radical reversed in each place.

(di/
2^

1 + -~-y
J

can

only change, for a point moving continuously along the curve,

when ~ becomes infinite. The interpretation is facilitated byax

putting

-j-
= tan 0, or

(
1 + -T- )

= - cos 0,

which reduces (3) to

y*= 2a2
cos + G (7).

Here, when C&amp;gt; 2a2

(the case in which, as we have seen above,

there are minimum as well as maximum values of y on one side

of the line of force), there is no limit to the value of 0. It in

creases, of course, continuously for a point moving continuously

along the curve; the augmentation being 2?r for one complete

period (diagram 7).

When G&amp;lt; 2as
,

has equal positive and negative values at the

points in which the curve cuts the line of force. These values

being given by the equation

-
(8),
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Equation of are obtuse when C is positive (diagram 3), and acute when G is

elastic negative (diagram 1). The extreme negative value of C is of
curve. ,

course - 2a .

If we take C=-2a 2 + 6
2

,

b will be the maximum positive or negative value of ?/, as we

see by (7) ;
and if we suppose b to be small in comparison with

a, we have the case of a uniform spring bent, as a bow, but

slightly, by a string stretched between its ends.

BOW slightly 612. An important particular case is that of figure 1, which

corresponds to a bent bow having the same flexural rigidity

throughout. If the amount of bending be small, the equation

is easily integrated to any requisite degree of approximation.

We will merely sketch the process of investigation.

Let e be the maximum distance from the axis, corresponding

to x = 0. Then y = e gives
~- =

0, and (3) becomes

whenoe

For a first approximation, omit e
s -

y* in comparison with

where they occur in the same factors, and we have

or, since y = e when x - 0,

y = e cos -

the harmonic curve, or curve of sines, which is the simplest form

assumed by a vibrating cord or pianoforte wire.

For a closer approximation we may substitute for y, in those

factors where it was omitted, the value given by (10); and so on,

Thus we have

dy e
a -y

2

/, 3e
2

. 2
x\

= --
(
1 + sin

2 -
, nearly,

dx a \ 8&amp;lt;r a/
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dy dx ( 3e
2

3e
2 2^\

Bowsiightly
Or / .

= 1 + ^ o
-

TZ772 cos
&amp;gt;

bent.

,y x/. 3e
2
\ 3e

2

cos
1 - = - 1 +

from which, by integration,

\ 3e
2 2x

\ )
~

00~~2
S111

{

y / ^e2 \ \ %t&amp;gt;

3 r 9fx f - oe \ oe . jc . ^cc
~ M + -Tc~~5 f

+ o~rr sin - sm .

a\ 16aVJ 32c*
2 a a

613. As we choose particularly the common pendulum for Plane

the corresponding kinetic problem, the force acting on the and com-
rve

rigid body in the comparison must be that of gravity in II

the vertical through its centre of gravity. It is convenient,

accordingly, not to take unity as the velocity of the point

travelling along the bent wire, but the velocity gravity would

generate in a body falling through a height equal to half the

constant, a, of 611 : and this constant, a, will then be the

length of the isochronous simple pendulum. Thus if an elastic

curve be held with its line of force vertical, and if a point, P,

be moved along it with a constant velocity equal to Jga, (a

denoting the mean proportional between the radius of curvature

at any point and its distance from the line of force,) the tangent

at P will keep always parallel to a simple pendulum, of length

a, placed at any instant parallel to it, and projected with the

same angular velocity. Diagrams 1...5 correspond to vibra

tions of the pendulum. Diagram 6 corresponds to the case in

which the pendulum would just reach its position of unstable

equilibrium in an infinite time. Diagram 7 corresponds to

cases in which the pendulum flies round continuously in one

direction, with periodically increasing and diminishing velocity.

The extreme case, of the circular elastic curve, corresponds to

a pendulum flying round with infinite angular velocity, which of

course experiences only infinitely small variation in the course

of the revolution. A conclusion worthy of remark is, that the

rectification of the elastic curve is the same analytical problem
as finding the time occupied by a pendulum in describing any

given angle.
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wire of any 614. Hitherto we have confined our investigation of the

turbed by form and twist of a wire under stress to a portion of the whole
forces and

, e

coupes
wire not itself acted on by force from without, but merely

ienS
h lts engaged iQ transmitting force between two equilibrating systems

applied to the wire beyond this portion; and we have, thus,

not included the very important practical cases of a curve

deformed by its own weight or centrifugal force, or fulfilling

such conditions of equilibrium as we shall have to use after

wards in finding its equations of motion according to D Alem-

bert s principle. We therefore proceed now to a perfectly

general investigation of the equilibrium of a curve, uniform or

not uniform throughout its length; either straight, or bent and

twisted in any way, when free from stress
;
and not restricted

by any condition as to the positions of the three principal

flexure-torsion axes
( 596); under the influence of any dis

tribution whatever of force and couple through its whole

length.

Let a, p, y he the components of the mutual force, and
, rj,

those of the mutual couple, acting between the matter on the

two sides of the normal section through (x, y, z).
Those for the

normal section through (x + Bx, y + S?/, z + 82) will be

da ~ _ dfi ^ dy ~

a + -=- Ss, P + -y- ds, 7 + -/ 6s,
ds ds ds

Hence, if XSs, YSs, ZSs, and LSs, MSs, NSs he the components

of the applied force, and applied couple, on the portion 8s of the

wire between those two normal sections, we have
( 551) for the

equilibrium of this part of the wire

da d@ dy nA. =
,

JL = f- ,
Z^ = ................ (J.J,

ds ds ds

and (neglecting, of course, infinitely small terms of the second

order, as SyBs)

- LBs = ^Ss + 7S?/
-
p&z, etc. ;

u8

cr

dy O dz _. dn dz dx dt, dx dy
,- = -
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&quot;We may eliminate a, (3, y from these six equations by means of

the following convenient assumption

ds ds^rjs
k Longitudi-
r&amp;gt; nal tension.

T meaning the component of the force acting across the normal

section, along the tangent to the middle line. Prom this, and

the second and third of (2), we have

-=
ds

.-:
} -7- + I IV + I

-
.

dsj ds dsj ds

This, and the symmetrical expressions for /3 and y, used in (1)

give

ds { ds

ds ds

JT
ds ( ds

We have besides, from (2),

ds

ds

dsj d*

dy

dsj ds

ds) ds

ds) ds

ds)

&amp;gt; w-

dsj ds ds
..... (5).ds

To complete the mathematical expression of the circumstances,

it only remains to introduce the equations of torsion-flexure.

For this purpose, let any two lines of reference for the substance

of the wire, PK, PL, be chosen at right angles to one another in

the normal section through P. Let /c
,
\ be the components of

the curvature
( 589) in the planes perpendicular to these lines,

and through the tangent, PT, when the wire is unstrained ;
and

K, X what they become under the actual stress. Let T
O
denote

the rate of twist
( 119) of either line of reference round the

tangent from point to point along the wire in the unstrained

condition, and r in the strained, so that r r is the rate of twist

produced at P by the actual stress. Thus [595 (3)] we have

-K
) +c(X-\ )

+O,(T-TO)
...(6),

Equations
of torsion-
flexure.
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flexure.

Torsion,
and two
components
of curvature,
of wire (or

component
angular
velocities

of rotating
solid).

where & m
&amp;gt;

n
^&amp;gt;

(l &amp;gt;

m
&amp;gt;

n

of PK, PL, PT; so that

dx dy dz A Jr
dx

-r +m-f + n =
0, r-j-as as as as

II +

&amp;gt;

denote the directions

dy .dz-~ + n ^-
as ds

Now if lines Of, 0,L, O
t T, each of unit length, be drawn, as in

593, always parallel to PK, PL, PT, and if P be carried at

unit velocity along the curve, the component velocity of ,L

parallel to O
t T, or that of T parallel to O

t
K with its sign changed,

is
( 593) equal to K; and similar statements apply to X and r.

Hence,
&quot;

\\

&quot;

L
d_

/dx\ , d fdy\ ,
d /dz

V ds \dsj ds \dsj ds \ds

/dx\ d
fdy\

d fdz

\dsj ds \dsj ds \ds
x^ + {i

-

dl

ds

., dm
ds

...(8).

Equations (7) reduce (I, m, n), (I , m, n
)
to one variable element,

being the co-ordinate by which the position of the substance of

the wire, round the tangent at any point of the central curve, is

specified : and (8) express K, X, T in terms of this co-ordinate,

and the three Cartesian co-ordinates x, y, z of P. The specifi

cation of the unstrained condition of the wire gives K
O ,

X
,
T
O
as

functions of s. Thus (6) gives , 77,
each in terms of s

}
and

the four co-ordinates, and their differential coefficients relatively

to s. Substituting these in (4) and (5) we have four differential

equations which, with s

ds
2

ds
2

ds
s (9),

constitute the five equations by which the five unknown functions

(the four co-ordinates, and the tension, T) are to be determined

in terms of s, or by means of which, with s and T eliminated,

the two equations of the curve may be found, and the co-ordinate

for the position of the normal section round the tangent deter

mined in terms of x, y, z.
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The terminal conditions for any specified circumstances are Terminal

easily expressed in the proper mathematical terms, by aid of

equations (2). Thus, for instance, if a given force and a given

couple be directly applied to a free end, or if the problem be

limited to a portion of the wire terminated in one direction at a

point Q, and if, in virtue of actions on the wire beyond, we have

a given force (a , , y )
and a given couple ( , rj , Q acting on

the normal section through Q of the portion under consideration,

and if s is the length of the wire from the zero of reckoning for

s up to the point Q, and L
,
M

ot
N

Q
the values of L, M, N at this

point, the equations expressing the terminal conditions will be

dy . dz^

drj ,, / dz dx

From these we see, by taking L = 0, M =
Q, ^ =

0, a
fl

= 0,

& =
0, 7o

=
0,

=
0, ^ =

0, = 0, that

615. For the simple and important case of a naturally

straight wire, acted on by a distribution of force, but not of

couple, through its length, the condition fulfilled at a perfectly

free end, acted on by neither force nor couple, is that the curva

ture is zero at the end, and its rate of variation from zero, per
unit of length from the end, is, at the end, zero. In other words,

the curvatures at points infinitely near the end are as .the

squares of their distances from the end in general (or, as some

higher power of these distances, in singular cases). The same

statements hold for the change of curvature produced by the

stress, if the unstrained wire is not straight, but the other

circumstances the same as those just specified.

616. As a very simple example of the equilibrium of a
straight

wire subject to forces through its length, let us suppose the IlSyTittle

natural form to be straight, and the applied forces to be in

lines, and the couples to have their axes all perpendicular to

its length, and to be not great enough to produce more than

an infinitely small deviation from the straight line. Further,
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*n or(^er ^at ^ese forces and couples may produce no twist,

^ ^e ^nree flexure-torsion axes be perpendicular to and

along the wire. But we shall not limit the problem further

by supposing the section of the wire to be uniform, as we
should thus exclude some of the most important practical

applications, as to beams of balances, levers in machinery,
beams in architecture and engineering. It is more instructive

to investigate the equations of equilibrium directly for this

case than to deduce them from the equations worked out above

for the much more comprehensive general problem. The par
ticular principle for the present case is simply that the rate of

variation of the rate of variation, per unit of length along the

wire, of the bending couple in any plane through the length, is

equal, at any point, to the applied force per unit of length, with

the simple rate of variation of the applied couple subtracted.

This, together with the direct equations ( 599) between the

component bending couples, gives the required equations of

equilibrium.

The diagram representing a section of the wire in the plane

xy, let OP = x, PP =Sx. Let Y and N be the components

Ifc

Pf

in the plane of the diagram, of the applied force and couple,
each reckoned per unit of length of the wire; so that YSx
and NSx will be the amounts of force and couple in this

plane, actually applied to the portions of the wire between P
and P .

Let, as before
( 614), ft and y denote the components parallel

to OF and OZ of the mutual force*, and and
17
the components

* These forces, being each in the plane of section of the solid separating the

portions of matter between which they act, are of the kind called shearing forces.

See below, 662.
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in the plane XOY, XOZ, of the mutual couple, between the straight

portions of matter on the two sides of the normal section through nitety little

P
}
and ft, y and

, if the same for P . The matter between

these two sections is balanced under these actions from the

matter contiguous to it beyond them, and the force and couple

applied to it from without. These last have, in the plane XOY,
components respectively equal to YSx and N8x : and hence for

the equilibrium of the portion PP,

-
ft + YSx + ft

=
0, by forces parallel to OY,

and - + NSx + % + ft8x = 0, by couples in plane XO Y,

the term ftSx in this second equation being the moment of the

couple formed by the infinitely nearly equal forces ft, ft in the

dissimilar parallel directions through P and P/
. Now

Hence the preceding equations give

--

and these, by the elimination of ft,

dx2 dx

Similarly, by forces and couples in the plane XOZ,

dx

couples in this plane being reckoned positive when they tend to

turn from the direction of OX to that of OZ; which is opposite

to the convention (551) generally adopted as being proper when

the three axes are dealt with symmetrically.

Since the wire deviates infinitely little from the straight line

OX, the component curvatures are

^ in the plane XOY,

and ~ XOZ.
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Straight
beam infi

nitely little

bent.

Hence the equations of flexure are

Case of in

dependent
flexure in
two planes.

= a
dxs dx

where B and C are the flexural rigidities ( 596) in the planes

xy and xz, and a the coefficient expressing the couple in either

produced by unit curvature in the other
;
three quantities which

are to be regarded, in general, as given functions of x. Substi

tuting these expressions for and
rj,

in (2) and
(3),

we have

the required equations of equilibrium.

617. If the directions of maximum and minimum flexural

rigidity lie throughout the wire in two planes, the equations

of equilibrium become simplified by these planes being chosen

as planes of reference, XOY, XOZ. The flexure in either plane

then depends simply on tbe forces in it, and thus the problem
divides itself into the two quite independent problems of in

tegrating tbe equations of flexure in the two principal planes,

and so finding the projections of the curve on two fixed planes

agreeing witb tbeir position when the rod is straight.

In this case, and with XOY, XOZ so chosen, we have a = 0.

Hence the equations of flexure (4) become simply

and the differential equations of the curve, found by using these

in (2) and (3),

here
dx (G).

Here |9 and $%&amp;gt; are to be generally regarded as known functions

of x, given explicitly by (6), being the amounts of component

simple forces perpendicular to the wire, reckoned per unit of its

length, that would produce the same figure as the distribution of

force and couple we have supposed actually applied throughout
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the length. Later, when occupied with the theory of magnetism, Case of in-

we shall meet with a curious instance of the relation expressed flexure in

by (6).
In the meantime it may be remarked that although the

figure of the wire does not sensibly differ when the simple distri

bution of force is substituted for any given distribution of force

and couple, the shearing forces in normal sections become

thoroughly altered by this change of circumstances, as is shown

by (1).
When the wire is uniform, B and C are constant, and

the equations of equilibrium become

dx*

The simplest example is obtained by taking 3^ and $ each piank bent

constant, a very interesting and useful case, being that of a
weight*&quot;

uniform beam influenced only by its own weight, except where

held or pressed by its supports. Confining our attention to

flexure in the one principal plane, XOY, and supposing this to

be vertical, so that
%j&amp;gt;

= gw, if w be the mass per unit of length ;

we have, for the complete integral, of course

............. (8),

where K, K , etc., denote constants of integration. These, four

in number, are determined by the terminal conditions
; which,

for instance, may be that the value of y and of -~ is given for
d/x

each end. Or, as for instance in the case of a plank simply

resting with its ends on two edges or trestles, and free to turn

round either, the condition may be that the curvature vanishes

at each end : so that if OX be taken as the line through the

points of support, we have

&amp;gt; portet
its ends

I being the length of the plank. The solution then is

y =
g
-j.-&amp;lt;h(x*-2lx*

+ l
3

x) (9).

Hence, by putting x = i, we find y = -=. ^- -^-.
for the distance

) 1 O X 2*
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Plank sup
ported by
its ends;

by its

middle.

by which the middle point is deflected from the straight line

joining the points of support.

Or, as in the case of a plank balanced on a trestle at its middle

(taken as zero of x), or hung by a rope tied round it there, we

may have

and

dx
=

3-l

when x= 0,

when x=%l [see above, 614
(10)].

The solution in this case is, for the positive half of the plank,

(10).

Droops com
pared.

By putting x = %l, we find y -
9~

.

16 ^ . Hence

618. When a uniform bar, beam, or plank is balanced on a

single trestle at its middle, the droop of its ends is only f of the

droop which its middle has when the bar is supported on trestles

at its ends. From this it follows that the former is f and the

latter f of the droop or elevation produced by a force equal to

half the weight of the bar, applied vertically downwards or

upwards to one end of it, if the middle is held fast in a hori

zontal position. For let us first suppose the whole to rest on a

trestle under its middle, and let two trestles be placed under

its ends and gradually raised till the pressure is
(entirely taken

off from the middle. During this operation the middle remains

fixed and horizontal, while a force increasing to half the weight,

applied vertically upwards on each end, raises it through a

height equal to the sum of the droops in the two cases above

referred to. This result is of course proved directly by com-

piank sup- paring the absolute values of the droop in those two cases as

ends or found above, with the deflection from tbe tangent at the end of

the cord in the elastic curve, figure 2, of 611, which is

cut by the cord at right angles. It may be stated otherwise
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thus : the droop of the middle of a uniform beam resting on Plank sup-

trestles at its ends is increased in the ratio of 5 to 13 by laying ends or
yi

a mass equal in weight to itself on its middle : and, if the

beam is hung by its middle, the droop of the ends is increased

in the ratio of 3 to 11 by hanging on each of them a mass

equal to half the weight of the beam.

619. The important practical problem of finding the distri- by three or
, ,. f, ,, . ,

, f. ,. , . ... more points.
bution oi the weight of a solid on points supporting it, when
more than two of these are in one vertical plane, or when
there are more than three altogether, which

( 568) is indeter

minate* if the solid is perfectly rigid, may be completely solved

for a uniform elastic beam, naturally straight, resting on three

or more points in rigorously fixed positions all nearly in one

horizontal line, by means of the preceding results.

If there are i points of support, the i I parts of the rod

between them in order and the two end parts will form i + I

curves expressed by distinct algebraic equations [ 617(8)], each

involving four arbitrary constants. For determining these con

stants we have 4ii + 4 equations in all, expressing the following
conditions :

I. The ordinates of the inner ends of the projecting parts of

the rod, and of the two ends of each intermediate part, are

respectively equal to the given ordinates of the corresponding

points of support [2i equations].

II. The curves on the two sides of each support have co

incident tangents and equal curvatures at the point of transi

tion from one to the other [2i equations].

III. The curvature and its rate of variation per unit of

length along the rod, vanish at each end [4 equations].

Thus the equation of each part of the curve is completely

determined: and then, by 616, we find the shearing force

in any normal section. The difference between these in the

*
It need scarcely be remarked that indeterminateness does not exist in

nature. How it may occur in the problems of abstract dynamics, and is obvi

ated by taking something more of the properties of matter into account, is

instructively illustrated by the circumstances referred to in the text.

VOL. II. 11
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neighbouring portions of the rod on the two sides of a point

of support, is of course equal to the pressure on this point.

piank sup- 620. The solution for the case of this problem in which
portedbyits ** i
ends and two of the points of support are at the ends, and the third
middle. .

r
7*

midway between them either exactly in the line joining them,

or at any given very small distance above or below it, is found

at once, without analytical work, from the particular results

stated in 618. Thus if we suppose the beam, after being
first supported wholly by trestles at its ends, to be gradually

pressed up by a trestle under its middle, it will bear a force

simply proportional to the space through which it is raised

from the zero point, until all the weight is taken off the ends,

and borne by the middle. The whole distance through which

the middle rises during this process is, as we found, *^- ;

and this whole elevation is of the droop of the middle in the

first position. If therefore, for instance, the middle trestle be

fixed exactly in the line joining those under the ends, it will

bear f of the whole weight, and leave $ to be borne by each

end. And if the middle trestle be lowered from the line join

ing the end ones by T
7
^ of the space through which it would

have to be lowered to relieve itself of all pressure, it will bear

just J of the whole weight, and leave the other two thirds to

be equally borne by the two ends.

Rotation of 621. A wire of equal flexibility in all directions, and
a wireround l *

its elastic straight when freed from stress, offers, when bent and twisted
central line. .

in any manner whatever, not the slightest resistance to being
turned round its elastic central curve, as its

f

conditions of

Elastic uni-
equilibrium are in no way affected by turning the whole wire

joint

re
i89

^us equally throughout its length. The useful application of

this principle, to the maintenance of equal angular motion in

two bodies rotating round different axes, is rendered somewhat

difficult in practice by the necessity of a perfect attachment

and adjustment of each end of the wire, so as to have the tan

gent to its elastic central curve exactly in line with the axis

of rotation. But if this condition is rigorously fulfilled, and

the wire is of exactly equal flexibility in every direction, and
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exactly straight when free from stress, it will give, against any Equable
r . , i P P L

elastic ro-

constant resistance, an accurately umiorm motion from one to tating joint,

another of two bodies rotating round axes which may be in

clined to one another at any angle, and need not be in one

plane. If they are in one plane, if there is no resistance to

the rotatory motion, and if the action of gravity on the wire

is insensible, it will take some of the varieties of form
( 612)

of the plane elastic curve of James Bernoulli. But however

much it is altered from this
;
whether by the axes not being in

one plane ;
or by the torsion accompanying the transmission of

a couple from one shaft to the other, and necessarily, when the

axes are in one plane, twisting the wire out of it; or by gravity;

the elastic central curve will remain at rest, the wire in every
normal section rotating round it with uniform angular velocity,

equal to that of each of the two bodies which it connects.

Under Properties of Matter, we shall see, as indeed may be

judged at once from the performances of the vibrating spring
of a chronometer for twenty years, that imperfection in the

elasticity of a metal wire does not exist to any such degree as

to prevent the practical application of this principle, even in

mechanism required to be durable,

It is right to remark, however, that if the rotation be too

rapid, the equilibrium of the wire rotating round its unchanged
elastic central curve may become unstable, as is immediately dis

covered by experiments (leading to very curious phenomena),

when, as is often done in illustrating the kinetics of ordinary

rotation, a rigid body is hung by a steel wire, the upper end of

which is kept turning rapidly.

622. If the wire is not of rigorously equal flexibility in all Practical

v A u -11 i ? ir inequalities.

directions, there will be a periodic inequality in the communi
cated angular motion, having for period a half turn of either

body : or if the wire, when unstressed, is not exactly straight,

there will be a periodic inequality, having the whole turn for

its period. In other words, if
&amp;lt;/&amp;gt;

and
&amp;lt;/&amp;gt;

be angles simultane

ously turned through by the two bodies, with a constant work

ing couple transmitted from one to the other through the wire,
&amp;lt;

&amp;lt;/&amp;gt;

will not be zero, as in the proper elastic universal

11-2
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Practical flexure joint, but will be a function of sin 20 and cos 20 if the

first defect alone exists
;
or it will be a function of sin &amp;lt; and

cos
&amp;lt;/&amp;gt;

if there is the second defect whether alone or along with

the first. It is probable that, if the bend in the wire when

Elastic ro- unstressed is not greater than can be easily provided against

in actual construction, the inequality of action caused by it

may be sufficiently remedied without much difficulty in

practice, by setting it at one or at each end, somewhat inclined

to the axis of the rotating body to which it is attached. But

these considerations lead us to a subject of much greater interest

in itself than any it can have from the possibility of usefulness

in practical applications. The simple cases we shall choose

illustrate three kinds of action which may exist, each either

alone or with one or both the others, in the equilibrium of a

wire not equally flexible in all directions, and straight when

unstressed.

Eolation 623. A uniform wire, straight when unstressed, is bent till

Swtiocen- its two ends meet, which are then attached to one another, with

ou
1

Sight the elastic central curve through each touching one straight

into* hoop, line: so that whatever be the form of the normal section, and

the quality, crystalline or non-crystalline, of the substance, the

whole wire must become, when in equilibrium, an exact circle

(gravity being not allowed to produce any disturbance). It is

required to find what must be done to turn the whole wire

uniformly through any angle round its elastic central circle.

If the wire is of exactly equal flexibility in all directions*, it

will, as we have seen ( 621), offer no resistance at all to this

action, except of course by its own inertia; and if it is once

set to rotate thus uniformly with any angular velocity, great or

small, it would continue so for ever were the elasticity perfect,

and were there no resistance from the air or other matter

touching the axis.

To avoid restricting the problem by any limitation, we must

suppose the wire to be such that, if twisted and bent in any

way, the potential energy of the elastic action developed, per

* In this case, clearly it might have been twisted before its ends were put

together, without altering the circular form taken when left with its ends joined..
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unit of length, is a quadratic function cf the twist, and two com- Rotation

ponents of the curvature
( 590, 595), with six arbitrarily given elastic cen-

coefficients. But as the wire has no twist*, three terms of this of a straight

function disappear in the case before us, and there remain only into a hoop.

three terms, those involving the squares and the product of

the components of curvature in planes perpendicular to two

rectangular lines of reference in the normal section through

any point. The position of these lines of reference may be

conveniently chosen so as to make the product of the com

ponents of curvature disappear : and the planes perpendicular
to them will then be the planes of maximum and minimum
flexural rigidity when the wire is kept free from twist-f. There

is no difficulty in applying the general equations of 614 to

express these circumstances and answer the proposed question.

Leaving this as an analytical exercise to the student, we take a

shorter way to the conclusion by a direct application of the

principle of energy.

Let the potential energy per unit of length be ^(K*+ (7A
2

),

when K and A. are the component curvatures in the planes of

maximum and minimum flexural rigidity: so that, as in 617,

B and G are the measures of the flexural rigidities in these

planes. Now if the wire be held in any way at rest with these

planes through each point of it inclined at the angles &amp;lt; and

^7r &amp;lt;f&amp;gt;

to the plane of its elastic central circle, the radius of this

circle being r, we should have K = -COS&amp;lt;, A, = -siii&amp;lt;. Hence,

since 2-rrr is the whole length,

(1).

* Which we have supposed, in order that it may take a circular form;

although in the important case of equal flexibility in all directions this condition

would obviously be fulfilled, even with twist.

t When, as in ordinary cases, the wire is either of isotropic material (see 677

below), or has a normal axis
( 596) in the direction of its elastic central line,

flexure will produce no tendency to twist : in other words, the products of twist

into the components of curvature will disappear from the quadratic expressing

the potential energy: or the elastic central line is an axis of pure torsion.

But, as shown in the text, the case under consideration gains no simplicity

from this restriction.
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Rotation

elastic cen-

of a straight
wire made
into a hoop.

Rotation

strained!&quot;

Let us now suppose every infinitely small part of the wire to

be acted on by a couple in the normal plane, and let L be the

amount of this couple per unit of length, which must be uniform
.. - ,, . . , ., . ,, ,

,.
,

all round the ring in order that the circular form may be re

tained, and let this couple be varied so that, rotation being once

commenced, &amp;lt;/&amp;gt; may increase at any uniform angular velocity.

The equation of work done per unit of time
( 240, 287) is

dE dE
-77 =

-77 $dt
d&amp;lt;f&amp;gt;

r

And therefore, by (1),

B-C . B-C . OJLL=
2

sin
(ft

cos &amp;lt;

=
---j- sin

2&amp;lt;f&amp;gt;,

which, shows that the couple required in the normal plane

through every point of the ring, to hold it with the planes of

greatest flexural rigidity touching a cone inclined at any angle,

&amp;lt;/&amp;gt;,

to the plane of the circle, is proportional to sin 2&amp;lt;

;
is in the

direction to prevent c/&amp;gt;

from increasing ;
and when

&amp;lt;/&amp;gt;

=
ITT,

T&amp;gt; _ ri

amounts to o-r~ Per un^ length of the circumference. From

this we see that there are two positions of stable equilibrium,

being those in which the plane of least flexural rigidity lies

in the plane of the ring ;
and two positions of unstable equili

brium, being those in which the plane of greatest flexural

rigidity is in the plane of the ring.

624. A wire of uniform flexibility in all directions, so shaped
as to be a circular arc of radius a when free from stress, is bent

till its ends meet, and these are joined as in 623, so that the

whole becomes a circular ring of radius r. It is required to

find the couple which will hold this ring turned round the

central curve through any angle &amp;lt; in every normal section,

from the position of stable equilibrium (which is of course that

in which the naturally concave side of the wire is on the

concave side of the ring, the natural curvature being either

increased or diminished, but not reversed, when the wire is

bent into the ring). Applying the principle of energy exactly

as in the preceding section, we find that in this case the couple
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is proportional to sin &, and that when 6 = ATT. its amount per Rotation
round its

unit of length of the circumference is
,

if B denote the trai cS!&quot;

dT of a hoop of

n , . . ,. wireequnlly
flexural rigidity. flexible in

. all direc-

For in this case we have the potential energy
when un-

n of/ 1 1
A&quot; /I A&quot;) n/1 2 1\ ..

strained.

i&amp;gt;
= TTTJj &amp;lt; I COS

&amp;lt;p

I + I Sin G&amp;gt; I &amp;gt;
= 7T7

1

/) I j COS ro H

LV* 9* / \f / J \(^ CJ7* 7*p) (2),

and ^ =
o -=- = sind&amp;gt; ..................... (3).^ v7ZT &amp;lt;&amp;gt; ar

If every part of the ring is turned half round, so as to bring
the naturally concave side of the wire to the convex side of the

ring, we have of course a position of unstable equilibrium.

625. A wire of unequal flexibility in different directions is wire un

formed so that, when free from stress, it constitutes a circular ibiem differ-

arc of radius a, with the plane of greatest flexural rigidity at tions, and
i. ? f circular

each point touching a cone inclined to its plane at an angle a. when un

its ends are then brought together and joined, as in 623, 624,

so that the whole becomes a closed circular ring, of any given by baianc-
&&amp;gt; J

ing couples

radius r. It is required to find the changed inclination, 0, to

the plane of the ring, which the plane of greatest flexural

rigidity assumes, and the couple, G, in the plane of the ring,

which acts between the portions of matter on each side of any
normal section.

The two equations between the components of the couple

and the components of the curvature in the planes of greatest

and least flexural rigidity determine the two unknown quantities

of the problem.

These equations are

B ( - cos &amp;lt; cos a
j
= 6r cos

&amp;lt;/&amp;gt;

I

/i \ N h

C (
- sin a!) sin a

)
= G sin

&amp;lt;f&amp;gt;

\r a / j

since - cos a and - sin a are the components of natural curva-
a a

ture in the principal planes, and therefore - cos &amp;lt;

-- cos a, and
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Wire un- 1 1

iSlein differ&quot;

- sin &amp;lt;

- - sin a, are the changes from the natural to the actual

ent direc-

^S and curvatures in these planes maintained by the corresponding corn-

when un- ponents G cos &amp;lt; and G sin &amp;lt;t&amp;gt; of the couple 6f.
strained,
bent to an-

by
h
baianc-

e
&quot;^ne Pr blem, so far as the position into which the wire turns

appS
P
to

S roun &amp;lt;l its elastic central curve, may be solved by an application
its ends. Of the principle of energy, comprehending those of 623, 624

as particular cases.

Let L be the amount, per unit of length of the ring, of the

couple which must be applied from without, in each normal

section, to hold it with the plane of maximum flexural rigidity

at each point inclined at any given angle, &amp;lt;,

to the plane of the

ring. We have, as before
( 623, 624), for the potential energy

of the elastic action in the ring when held so,

E= irr \B (
C^L$. _

??lrj + Q t^_9 _ s^n_a\
I

I \ r a J \ r a ) )

Hence

_ _ 1 dE ( /cos
^&amp;gt;

cos a\ sin
^&amp;gt;

/sin
^&amp;gt;

sin a\ cos
&amp;lt;^&amp;gt; ]

This equated to zero is the same as (4) with G eliminated, and

determines the relation between
&amp;lt;jf&amp;gt;

and r, in order that the ring

when altered to radius r instead of a may be in equilibrium in

itself (that is, without any application of couple in the normal

section). The present method has the advantage of facilitating

the distinction between the solutions, as regards stability or insta

bility of the equilibrium, since
( 291) for stable equilibrium

E is a minimum, and for unstable equilibrium a maximum.

As a particular case, let C = oo
,
which simplifies the problem

very much. The terms involving C as a factor in (5) and (6)

become nugatory in this case, and require of course that

sin
&amp;lt;/&amp;gt;

sin a _
r a

But the former method is clearer and better for the present case;

as this result is at once given by the second of equations (4) ;
and

then the value of G, if required, is found from the iirst. We
conclude what is stated in the following section:
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626. Let a uniform hoop, possessing flexibility only in one Conical

tangent plane to its elastic central line at each point, be given,

so shaped that when under no stress (for instance, when cut

through in any normal section and uninfluenced by force from

other bodies) it rests in the form of a circle of radius a, with

its planes of inflexibility all round touching a cone inclined

to the plane of this circle. This is very nearly the case with

a common hoop of thin sheet-iron fitted upon a conical vat,

or on either end of a barrel of ordinary shape. Let such a

hoop be shortened (or lengthened), made into a circle of radius

a by riveting its ends together ( 623) in the usual way, and

left with no force acting on it from without. It will rest with

its plane of inflexibility inclined at the angle &amp;lt;j&amp;gt;

= sin&quot;

1

(r sin a/a)

to the plane of its circular form, and the elastic couple acting
in this plane between the portions of matter on the two sides

of any normal section will be

B /cos $ cos a\~ _ /

cos ( V a

These results we see at once, by remarking that the component
curvature in the plane of inflexibility at each point must be

invariably of the same value, sin a/a, as in the given unstressed

condition of the hoop : and that the component couple, G cos
&amp;lt;,

in the plane perpendicular to that of inflexibility at each

point, must be such as to change the component curvature in

this plane from cos a/a to cos
&amp;lt;/&amp;gt;/r.

The greatest circle to which such a hoop can be changed is

of course that whose radius is a/sin a : and for this &amp;lt;

=
JTT, or the

surface of inflexibility at each point (the surface of the sheet-

metal in the practical case) becomes the plane of the circle :

and therefore G = oo
, showing that if a hoop approaching

infinitely nearly to this condition be made, in the manner ex

plained, the internal couple acting across each normal section

will be infinitely great, which is obviously true.

627. Another very important and interesting case readily
dealt with by a method similar to that which we have applied
to the elastic wire, is the equilibrium of a plane elastic plate
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Flexure of a bent to a shape differing infinitely little from the plane, by any
plate. forces subject to certain conditions stated below

( 632). Some
definitions and preliminary considerations may be conveniently
taken first.

Definitions. (1) A surface of a solid is a surface passing through always
the same particles of the solid, however it is strained.

(2) The middle surface of a plate is the surface passing

through all those of its particles which, when it is free from

stress, lie in a plane midway between its two plane sides.

(3) A normal section of a plate, or a surface normal to a

plate, is a surface which, when the plate is free from stress,

cuts its sides and all planes parallel to them at right angles,

being therefore, when unstrained, necessarily either a single

plane or a cylindrical (or prismatic) surface.

(4) The deflection of any point or small part of the plate, is

the distance of its middle surface there from the tangent plane
to the middle surface at any conveniently chosen point of

reference in it.

(5) The inclination of the plate, at any point, is the inclina

tion of the tangent plane of the middle surface there to the

tangent plane at the point of reference.

(6) The curvature of a plate at any point, or in any part, is

the curvature of its middle surface there.

(7) In a surface infinitely nearly plane the curvature is said

to be uniform, if the curvatures in every two parallel normal

sections are equal. r
,

(8) Any diameter of a plate, or distance in a plate infinitely

nearly plane, is called finite, unless it is an infinitely great mul

tiple of the least radius of curvature multiplied by the greatest

inclination.

Geometrical Choosing XOY as the tangent plane at the point of reference,

Saries&quot;&quot; let (#, y, z) be any point of its middle surface, i its inclination

there, and - its curvature in a normal section through that
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point, inclined at an angle &amp;lt;j&amp;gt;

to ^OX. We have
Geometricalprelimi
naries.

and, if i be infinitely small,

2 2
. d z

z . 2 /ON
sinA cos^ + Enn*$ ..... (2).

r
2

To prove these, let
, 77,

be the co-ordinates of any point of the

surface infinitely near (x, y, is). Then, by the elements of the

differential calculus,

dz * dz , fd
z
z , a ^ d 2

z . z A-
2 ?? )

y J
S 7 ^ r 7 / O I O Ss IArf 1 7 ^S / f

aa; a?/ \* dxdy dy

Let = p cos 0, 77
= p sin

&amp;lt;/&amp;gt;,

so that we have

A 1021, ^ ^ .
&quot;)

4 = ,4p + s-op where ^1 =
-y-

cos &amp;lt; 4-
-y-

sin

**
,

d&amp;gt;e d-/. f
(0)&amp;gt;

and -o = -7-5 cos d&amp;gt; + z r sin &amp;lt;& cos 0+ -=-5 sin&quot;6
ic o:a?/ a?/&quot; J

Then by the formula for the curvature of a plane curve
( 9),

-I TJ I

=
, or, as A is infinitely small,

- = B
t

r (l+^
2

)

f r

and thus (2) is proved.

It follows that the surface represented by

z = J (Ax
2 + 2cxy + By&quot;) (4),

is a surface of uniform curvature if -4, B, c be constant through
out the admitted range of values of (x, y) ;

these being limited

by the condition that Ax + cy, and ex + By must be everywhere

infinitely small.

628. When a plane surface is bent to any other shape than

a developable surface
( 139), it must experience some degree

of stretching or contraction. But an essential condition for the

theory of elastic plates on which we are about to enter, is that

the amount of the stretching or contraction thus necessary in

the middle surface is at most incomparably smaller than the

stretching and contraction of the two sides ( 141) due to cur

vature. It will be shown in 629 that this condition, if we
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exclude the case of bending into a surface differing infinitely

little from a developable surface, is equivalent to the fol

lowing :

Limitation The deflection [ 627 Def. (4)] is, at all places finitely

not to imply
f&quot;S 627 Def. (8)1 distant from the point of reference, incom-

a stretching
L0

T 77-7
of middle parooly smaller than the thickness.
surface *

And if we extend the signification of &quot;deflection&quot; from that
either side.

Defined jn (ty of g Q^7 }
to distance from some true developable sur

face, the excluded case is of course brought under the statement.

Although the truth of this is obvious, it is satisfactory to

prove it by investigating the actual degrees of stretching and

contraction referred to.

stretching 629. Let us suppose a given plane surface to be bent to

synciastic some curved form without any stretching or contracting of
or anticlas- .. . _ s\
tic flexure, lines radiating from some particular point of it, 0; and let it

be required to find the stretching or contraction in the cir

cumference of a circle described from as centre, with any
radius a

}
on the unstrained plane. If the stretching in each

part of the circumference, and not merely on the whole, is to be

found, something more as to the mode of the bending must be

specified; which, for simplicity, in the first place, we shall

suppose to be, that any point P of the given surface moves in

a plane perpendicular to the tangent plane through 0, during

the straining.

Let a, be polar co-ordinates of P in its primitive position,

and r, those of the projection on the tangent plane through 0,

of its position in the bent surface, and let z be the distance of

this position from the tangent plane through 0. An element,

adO, of the unstrained circle, becomes

on the bent surface; and, therefore, for the stretching* of this

element we have

dr2
d&amp;lt;

Eatio of the elongation to the unstretched length.
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Hence if e denote the ratio of the elongation of the whole cir- stretching
of a plane by

cumference to its unstretched length, or the mean stretching of synclastic
or anticlas-

the circumference, tic flexure.

dz
* V i\ /ox-

TJ7r2 )-lr ............ (2),
tfdff) )

where we must suppose z and r known functions of 6. Confining

ourselves now to distances from within which the curvature

of the surface is sensibly uniform, we have

a2
. a /. , cf \ /0

.

=
,
and r = p sm - = a

{
1

jr 2 + etc.
)

......... ( o),
Zp p \ p /

if p be the radius of curvature of the normal section through

and P: and, if we take as the zero line for that in which the

tangent plane is cut by one of the principal normal planes ( 130),

2 = l + - + l - - cos 20 ...(4),
P P, P,

2
\P, pJ

2
VP, pJ

where p,, p2
are the principal radii of curvature. Hence the

term dr2

ja
2d02 under the radical sign disappears if we include no

terms involving higher powers than the first, of the small fraction

aa

/p
3

; and, to this degree of approximation

or, by (4),
and reductions, finally

Using this in (2) we find

The whole amount of stretching thus expressed will, it follows

from (5), be distributed uniformly through the circumference, if,

instead of compelling each point P to remain in the plane through

0, perpendicular to XOY, we allow it to yield in the direction

of the circumference through a space equal to

From (6) we conclude that
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stretching 630. If a plane area be bent to a uniform degree of curva-
of a plane

tic want?&quot;

* UI&amp;gt;e throughout, without any. stretching in any radius through
clastic a certain point of it, and with uniform stretching or contraction
flexure. f

over the circumference of every circle described from the same

point as centre, the amount of this contraction (reckoned

negative where the actual etfect is stretching) is equal to the

ratio of one-sixth of the square of the radius of the circle, to

the rectangle under the maximum and minimum radii of cur

vature of normal sections of the surface
;
or which is the same

thing, the ratio of two-thirds of the rectangle under the maxi

mum and minimum deflections of the circumference from the

tangent plane of the surface at the centre, to the square

of the radius; or, which is the same, the ratio one-third of

the maximum deflection to the maximum radius of curva

ture.

If the surface thus bent be the middle surface of a plate of

uniform thickness, and if each line of particles perpendicular

to this surface in the unstrained plate remain perpendicular to

it when bent, the stretching on the convex side, and the con

traction on the concave side, in any normal section, is obviously

equal to the ratio of half the thickness, to the radius of curva

ture. The comparison of this, with the last form of the pre

ceding statement, proves that the second of the two conditions

stated in 628 secures the fulfilment of the first.

stretching 631. If a surface already bent as specified, be again bent to

sur
a
fac

u
e
r

by
d

a different shape still fulfilling the prescribed conditions, or if

fulfilling

*
a surface given curved be altered to any other shape by bend-

Sditfon. ing according to the same conditions, the contraction pro

duced in the circumferences of the concentric circles by this

bending, will of course be equal to the increment in the value

of the ratio stated in the preceding section. Hence if a curved

surface be bent to any other figure, without stretching in any

part of it, the rectangle under the two principal radii of curva-

Oauss s ture at evei7 point remains unchanged. This is Gauss s cele-

ie^aSg brated theorem regarding the bending of curved surfaces, of

flexure. which we gave a more elementary demonstration in our intro

ductory Chapter (see 138, 150).
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632. Without further preface we now commence the theory Limitations

of the flexure of a plane elastic plate with the promised (S 627) forces and
.

^
. ,. . flexures to

statement of restricting conditions. be admitted
in elemen-

(1) Of the forces applied from without to any part of the of elastic

plate, hounded
&quot;by

a normal surface
[ 627 (3)], the components

parallel to any line in the plane of the plate are either evan

escent or are reducible to couples. In other words the algebraic

sum of such components, for any part of the plate bounded by
a normal surface, is zero.

(2) The principal radii of curvature of the middle surface are

everywhere infinitely great multiples of &quot;the thickness of the

plate.

(3) The deflection is nowhere, within finite distance from the

point of reference, more than an infinitely small fraction of the

thickness. This condition has a definite meaning for an infi

nitely large plate, which may be explained thus : it would be

necessary to go to a distance equal to a large multiple of the

product of the least radius of curvature into the greatest incli

nation, to reach a place where the deflection is more than a

very small fraction of the thickness of the plate. The conside

ration of this condition, is of great importance in connection

with the theory of the propagation of waves through an infi

nite plane elastic plate, but scarcely belongs to our present

subject.

(4) Neither the thickness of the plate nor the moduluses of

elasticity of its substance need be uniform throughout, but if

they vary at all they must vary continuously from place to

place ;
and must not any of them be incomparably greater in

one place than in another within any finite area of the plate.

633. The general theory of &quot;elastic solids investigated later Results of

shows that when these conditions are fulfilled the distribution theo
1

of strain through the plate possesses the following properties,

the statement of which at present, although not necessary for

the particular problem on which we are entering, will promote
a thorough understanding and appreciation of the principles
involved.
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Results of (1) The stretching of any part of the middle surface is in-

theory finitely small in comparison with that of either side, in every
advance,

part of the plate where the curvature is finite.

(2) The particles in any straight line perpendicular to the

plate when plane, remain in a straight line perpendicular to

the curved surfaces into which its sides, and parallel planes of

the substance between them, become distorted when it is bent.

And hence the curves in which these surfaces are cut by any

plane through that line, have one point in it for centre of curva

ture of them all.

(3) The whole thickness of the plate remains unchanged, at

every point ;
but the half thickness on one side (which when

the curvature is synclastic is the convex side) of the middle

surface becomes diminished and on the other side increased, by

equal amounts comparable with the elongations and shorten

ings of lengths equal to the half thickness, measured on the

two side surfaces of the plate.

634. The conclusions from the general theory on which we

shall found the equations of equilibrium and motion of an

elastic plate are as follows :

Laws for Let a naturally plane plate be bent to any surface of uni-

eiastic plate form curvature [ 627 (7)] throughout, the applied forces and

advance.
m

the extents of displacement fulfilling the conditions and restric

tions of 632 : Then

(1) The force across any section of the plate is, at each

point of it, in a line parallel to the tangent plane to the middle

surface in the neighbourhood.

(2) The forces across any set of parallel normal sections are

equally inclined to the directions of the normal sections at all

points (that is to say, are in directions which would be parallel

if the plate were bent, and which deviate actually from parallel

ism only by the infinitely small deviations produced in the

normal sections of the flexure).

(3; The amounts of force across one normal section, or any
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set of parallel normal sections, on equal infinitely small areas, Laws for

are simply proportional to the distances of these areas from the

middle surface of the plate.

(4) The component forces in the tangent planes of the nor

mal sections are equal and in dissimilar directions in sections

which are perpendicular to one an

other. For proof, see 661. The

meaning of &quot;dissimilar directions&quot;

in this expression is explained by
the diagram; where the arrow-heads

indicate the directions in which

the portions of matter on the two

sides of each normal section would

yield if the substance were actually

divided, half way through the plate from one side, by each of

the normal sections indicated by dotted lines.

(5) By the law of superposition, we see that if the applied
forces be all doubled, or altered in any other ratio, the curva

ture in every normal section, and all the internal forces specified

in (1), (2), (3), (4), are changed in the same ratio
;
and the

potential energy of the internal forces becomes changed accord

ing to the square of the same ratio.

635. From 634 (3) it follows immediately that the forces

experienced by any portion of the plate bounded by a normal

section through the circumference of a closed polygon or curve

of the middle surface, from the action of the contiguous matter

of the plate all round it, may be reduced to a set of couples stress-

by taking them in groups over infinitely small rectangles S

into which the bounding normal section may be imagined as section.*

1

divided by normal lines. From 634 (2) it follows that the

distribution of couple thus obtained is uniform along each

straight portion, if any there is, of the boundary, and equal

per equal lengths in all parallel parts of the boundary.
Twisting

636. From 634 (4) it follows that the component couples

round axes perpendicular to the boundary are equal in parts

of the boundary at right angles to one another, and are in Sl
lcular

VOL. II. 12
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Principal
axes of

bending
stress.

Principal
axes of

bending
stress in

vestigated.

directions related to one another

in the manner indicated by the

circular arrows in the diagram ;

that is to say, in such directions

that if the axis is, according to

the rule of 234, drawn outwards

from the portion of the plate

under consideration, for one point

of the boundary it must be drawn

inwards for every point where the boundary is perpendicular to

its direction at that point.

637. We may now prove that there are two normal sections,

at right angles to one another, in which the component couples

round axes perpendicular to them vanish, and that in these

sections the component couples round axes coincident with the

sections are of maximum and minimum values.

Let OAB be a right-angled triangle of the plate. Let A and EL

Y be the two com

ponent couples

acting on the

side OA \
K and

II those on the

side OB-, and G
and H those on

the side AB ;

A&quot; the amount of

each couple be-

^ng reckoned per

unit of length

of the side on which it acts, and the axes and directions of the

several couples being as indicated by the circular arrows when

each is reckoned as positive. Then, if AB= a, and BAO =
&amp;lt;,

the

whole amounts of the couples on the three sides are respectively

Aa cos
&amp;lt;/&amp;gt;,

Ila cos
&amp;lt;/&amp;gt;,

Ka sin $, Ha sin
&amp;lt;f&amp;gt;,

Ga, Ha.
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Resolving the two latter round OX and F, we have Principal
axes of

Ga cos
4&amp;gt;

- Ha sin
&amp;lt;j&amp;gt;

round OX, SSSS-
, ~ . T, vestigated.

and #a sin
&amp;lt;}&amp;gt;

+ Ha cos &amp;lt; 07.

But if the portion in question, of the plate, were to become rigid,

its equilibrium would not be disturbed
( 564); and therefore

we must have

Ga cos
(j&amp;gt;

- Ha sin &amp;lt;

= A.a cos
&amp;lt;f&amp;gt;

+ Ha sin
&amp;lt;f&amp;gt; by couples round OX

and
(1).

Ga sin &amp;lt;
+ Ha cos

&amp;lt;f&amp;gt;

= Ka sin &amp;lt; + Ila cos
&amp;lt;f&amp;gt; n Y

From these we find immediately

G = A cos
2

&amp;lt; -i- 211 sin &amp;lt; cos &amp;lt; + K sin
2

&amp;lt;,

\

H= (K
-
A) sin &amp;lt; cos &amp;lt; + n(cos

a

&amp;lt;/&amp;gt;

- sin
2

&amp;lt;) J

.........^
Hence the values of

&amp;lt;/&amp;gt;,

which make H vanish, give to G its

maximum and minimum values, and being determined by the

equation

differ from one another by JTT.

A modification of these formulse, which we shall find valuable,
is obtained by putting

A) .............
......(4).

This reduces (2) to

G = 2, + n sin 2&amp;lt;
- cos

2&amp;lt;/&amp;gt;

which again become

where a [being a value of &amp;lt; given by (3)], and O are taken so

that II = Osin2a, = -Ocos2a,
|

so that, of course, O = (H
2+ (a)

2

)* J

This analysis demonstrates the following convenient synthesis of

the whole system of internal force in question :

122
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synciastic 638. The action experienced by each part of the plate, in

clastic

1 &quot;

virtue of the internal forces between it and the surrounding
stresses e-

con^guous matter of the plate, being called a stress [in accord

ance with the general use of this term defined below ( 658)],

may be regarded as made up of two distinct elements (1) a

synciastic stress, and (2) an anticlastic stress
;
as we shall call

them.

(1) Synciastic stress consists of equal direct bending action

round every straight line in the plane of the plate. Its amount

may be conveniently regarded as measured by the amount, S,

of the mutual couple between the portions of matter on the two

sides of any straight normal section of unit length. Its effect

would be to produce equal curvature in all normal sections

(that is to say, a spherical figure) if the plate were equally

flexible in all directions.

Anticlastic (2) Anticlastic stress consists of two simple bending stresses

ferred to its of equal amounts in opposite directions round two sets of

S
lpal

parallel straight lines perpendicular to one another in the

plane of the plate. Its effect would be uniform anticlastic

curvature, with equal convexities and concavities, if the plate

were equally flexible in all directions. Its amount is reckoned

as the amount, H, of the mutual couple between the portions

of matter on the two sides of a straight normal section of unit

length, parallel to either of these two sets of lines. It gives

rise to couples of the same amount, H, between the portions of

referred to matter on each side of a normal section of unit length parallel

Snecuo to either of the sets of lines bisecting the right angles between
thmat45. those

;
but the couples now referred

to are in the plane of the normal

section instead of perpendicular to

it. This is proved and illustrated

by the annexed diagram, represent

ing [a particular case of the diagram

arid equations (1) of 637] the equi

librium of an isosceles right-angled

triangle under the influence ofcouples,

each equal to JVi&amp;gt; applied to it round axes coinciding with
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its legs, and a third couple, n round an axis perpendicular to

its hypotenuse.

If two pairs of rectangular axes, each bisecting the right octantai re-

angles formed by the other, be chosen as axes of reference, an composition

anticlastic stress having any third pair of rectangular lines for tic stress.

3 &quot;

its axes may, as the preceding formulae [ 637 (5)] show, be

resolved into two having their axes coincident with the two

pairs of axes of reference respectively, by the ordinary cosine

formula with each angle doubled. Hence it follows that any
two anticlastic stresses may be compounded into one by the Constmc-

same geometrical construction as the parallelogram of forces, raiieiogram.

made upon lines inclined to one another at an angle equal to

twice that between the corresponding axes of the two given
stresses

;
and the position of the axes of the resultant stress

will be indicated by the angles of this diagram each halved.

639. Precisely the same set of statements are of course Geometrical

applicable to the curvature of a surface. Thus the proposition
ar

proved in 637 (3) for bending stresses has, for its analogue
in curvature, Euler s theorem proved formerly in 130

;
and

analogues to the series of definitions and propositions founded

on it and derived from it may be at once understood without

more words or proof.

Let z = ^(Ksf+2iexy + \y
g

) ....................... (1) Twocylin .

drical cur-

be the equation of a curved surface infinitely near a point at
**]

s

r

which it is touched by the plane YOX. Its curvature mav be pendicuiar
J

axes, and an

regarded as compounded of a cylindrical curvature, X, with axis anticlastic

parallel to OX, a cylindrical curvature, K, with axis parallel to round axis

OF, and an anticlastic curvature, or, with axis bisecting the their right

angles XO Y, YOX . Thus, if TZ and X each vanished, the surface

would be cylindrical, with l//c for radius of curvature and gene

rating lines parallel to Y. Or, if K and X each vanished, there

would be anticlastic curvature, with sections of equal maximum
curvature in the two directions, bisecting the angles XOY and

YOX
,
and radius of curvature in those sections equal to

1/zsr.

If now we put

cr = J(K + X), a = J(*c-A) ..................... (2),
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or a spheri- the equation of the surface becomes
cal curva-

two
e
a
a
ntt % = %{*(? + V

2

)
+ $(x

a

-y*) + 2vxy}.... ............ (3);
clastic cur
vatures; or, if x =

rcos&amp;lt;f&amp;gt;, y = rsin&amp;lt;/&amp;gt;, ^

S = a, cos 2a, *; = &amp;lt;o sin 2a /

In these formulas a measures the spherical curvature; and & and

cr two components of anticlastic curvature, referred to the pair

of axes X X, YY, and the other pair bisecting their angles. The

resultant of S and -nr is an anticlastic curvature to,
with axes in

clined, in the angle XOY at angle a to OX, and in YOX at

angle a to OY.

640. The notation of 637, 639 being retained, the work

done on any area A of the plate experiencing a change of cur

vature (8/t, SX, SOT) under the action of a stress (K, A, II), is

(KSK + A8A + 2Il8ar)/i ........................... (1);

or
(238&amp;lt;r

+ 2Sa+2l8OT).i ........................ (2),

if, as before,

Let PQP Q be a rectangular portion of the plate with its

centre at 0, and its sides Q P, P Q parallel to OX, and @T , PQ
parallel to 07. If

be the equation of the curved surface, we have

dz dz
-r =KX+Txy, -

7
-

dx dy

and therefore the tangent plane at (x, y) deviates in direction

from XOY by an infinitely small rotation

round OY\ ...

and wx + \ 0X1&quot;

&quot;

(

Hence the rotation from XOY to the mean tangent plane for all

points of the side PQ or Q P is

=Fj&amp;lt;7P./c
round OY,

and TCT.w OX.
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Hence if the tangent plane, XOY, at remains fixed, while the work done

curvature changes from (K, m, A) to (* + S/c, w+ SOT, \+ SA), the
inbendin -

work done by the couples PQ . K round OY, and PQ . II round

OX, distributed over the side PQ, will be

and an equal amount will be done by the equal and opposite

couples distributed over the side Q P undergoing an equal and

opposite rotation. Similarly, we find for the whole work done

on the sides FQ and Q P,

Hence the whole work done on all the four sides of the rectangle

is PQ . Q P . (KS/c + 2IISOT + ASA) :

whence the proposition to be proved, since any given area of the

plate may be conceived as divided into infinitely small rectangles.

It is an instructive exercise to verify the result by beginning

with the consideration of a portion of plate bounded by any

given curve, and using the expressions (1) of 637, by which

we find, for the couples on any infinitely short portion, ds, of its

boundary, specified in position by (x, y),

OY

But, as we have just seen in (4),
the rotation experienced by the

tangent plane to the plate at (x, y), when the curvature changes

from
(K, OT, A) to (K + SK, iff + SOT, A + 8A), is

scSOT + 2/8A round OX) ,.

and aSK + Ssr OY &quot;

the tangent plane to the plate at being supposed to remain un

changed in position; and therefore the work done on the portion

ds of the edge is

The required work, being the integral of this over the whole

of the bounding curve, is therefore
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sinoe *a* /*-4

and fx -^ ds = 0, fy -/- ds = 0.J ds Jy ds

Partial dif- 641. Considering now the elastic forces called into action

each integral being round the whole closed curve.

1. Considering now the elastic forces calle

equations by the flexure (K, CT, X) reckoned from the unstressed condition

of the plate (plane, or infinitely nearly plane), and denoting by
w the whole amount of their potential energy, per unit area of

the plate, we have, as in the case of the wire treated in 594,

......... (7);

or, according to the other notation,

= 8OTw........ (8);

where, as above explained, K and A denote the simple bending
stresses (measured by the amount of bending couple, per unit

of length) round lines parallel to Y and X respectively : fl

the anticlastic stress with axes at 45 to X and Y : and 2
and the synclastic stress and the anticlastic stress with OX
and OF for axes, together equivalent to K and A. Also, as in

595, we see that whatever be the character, eolotropic or iso-

tropic, 677, of the substance of the plate, it must be a homo-

Potential geneous quadratic function of the three components of curva-

eiastic plate ture, whether (K, X, r) or
(&amp;lt;r,

^, or). From this and (7), or (8),

it follows that the coefficients in the linear functions of the

three components of curvature which express the components
of the stress required to maintain it, must fulfil the ordinary

conservative relations of equality in three pairs, reducing the

whole number from nine to six.

Thus A, B, C, a, b, c denoting six constants depending on the

quality of the solid substance and the thickness of the plate, we

have w = %(AK
2 + \* + CV + 2a\n + 2b&K + 2cK\) ....... (9);

and hence, by (7),

K = AK + c\ + km 1

A= CK+B\+a& I ........................ (10).

j
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Transforming these by 8 640 (3) we have, in terms of
&amp;lt;r,

&. ta. Potential

energy of an

w =
i {(A + B + 2c) o-

2 + (A + B -
2c) S

2 + CV ffiikS*

(A-)a$} ...... (11),

and 22 = (A + B + 2c) a- + (A
-
B) $ + (6 + a) nr ~\

2 =
(A-)&amp;lt;r + (A+-2c)d + (b-a)&[ ......... (12).

211= (b + a)&amp;lt;r
+ (b-a) + (7 raj

These second forms are chiefly useful as showing immediately the

relations which must be fulfilled among the coefficients for the

important case considered in the following section.

642. If the plate be equally flexible in all directions, a Case of

synclastic stress must produce spherical curvature: an anti- bmty in an

clastic stress having any pair of rectangular lines in the plate

for its axes must produce anticlastic curvature having these

lines for sections of equal greatest curvature on the opposite

sides of the tangent plane : and in either action the amount of

the curvature is simply proportional to the amount of the

stress. Hence if j) and fe denote two coefficients depending on

the bulk-modulus and rigidity of the substance if isotropic (see

677, 680, below), and on the thickness of the plate, we have plate,

68 c

2 = j)C7, @ =
fc^, 7T=fcs7 ............. (13).

And therefore [ 640 (2)]

w = jjo* + fc(y + isr*) .................. (14).

Hence the coefficients in the general expressions of 641 fulfil,

in the case of equal flexibility in all directions, the following

conditions :

a = 0, 6 = 0, A = B, 2(A-c) = C .............. (15);

and the newly-introduced coefficients f) and tt are related to them

thus: A+c = %, J(7 = ^-c = fe ................... (16).

643. Let us now consider the equilibrium of an infinite plate ben s

plate, disturbed from its natural plane by forces applied to it

in any way, subject only to the conditions of 632. The sub

stance may be of any possible quality as regards elasticity in

different directions: and the plate itself need not be homo

geneous either as to this quality, or as to its thickness, in

different parts; provided only that round every point it is in

both respects sensibly homogeneous [632 Def. (4)] to distances

great in comparison with the thickness at that point.
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Plate bent 644. Let OX, OF be rectangular axes of reference in the

forces! plane of the undisturbed plate ;
and let z be the infinitely small

displacement from this plane, of the point (#, y) of the plate,

when disturbed by any forces, specified in their effective com

ponents as follows : Take a portion, E, of the plate bounded by
a normal surface cutting the middle surface in a line en

closing an infinitely small area cr in the neighbourhood of the

point (x, y], and let Za denote the sum of the component
forces perpendicular to XOT on all the matter of E in the

neighbourhood of the point (x, y) : and Lcr, Mcr the component

couples round OX and T obtained by transferring, according
to Poinsot, the forces from all points of the portion E, supposed
for the moment rigid, to one point of it which it is convenient

to take at the centre of inertia of the area, cr, of the part of the

Conditions middle surface belonging to it. This force and these couples,
Hbrium. along with the internal forces of elasticity exerted on the

matter of E, across its boundary, by the matter surrounding

it, must ( 564) fulfil the conditions of equilibrium for E treated

as a rigid body. And E, being not really rigid, must have the

curvature due, according to 641, to the bending stress con

stituted by the last-mentioned forces. These conditions ex

pressed mathematically supply five equations from which, four

elements specifying the internal forces being eliminated, we
have a single partial differential equation for z in terms of x

and y, which is the required equation of equilibrium.

Let a- be a rectangle PQP Q ,
with sides 8x parallel to OX

and Sy parallel to OY.

Let aSy, a Sy be the in

finitely nearly equal shear

ing forces perpendicular

to the plate in the normal

surfaces through PQ and

QP respectively : and let

/?, /3 be the corresponding

-X notation for PQ, P Q .

r-/s=^s
dy

Equations
of equili
brium of

plate bent

by any
forces, in

vestigated.

J
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The results of these actions on the portion, E, of the plate, con- Equations

sidered as rigid, are forces a By, ft Sx through the middle points of brium of

QP , Q P ,
in the direction of z positive, and forces aSy, ft$x by any

through the middle points of PQ , PQ, in the direction of z vesSgated.

negative. Hence, towards the equilibrium of E as a rigid body,

they contribute

(a-a)Sy+(ft -ft)Sx, or
( -^ + -^- ) SxSy, component force parallel to OZt

\ctx dy J

aSy. 8x couple round OY,

and ft&x . 3y OX]

(in these last two expressions the difference between a and a!

and between ft and ft are of course neglected). Again, if K,

A, II specify, according to the system of 637, the bending
stress at (x, y), we shall have couples infinitely nearly equal

and opposite, on the pairs of opposite sides, of which, estimated

in components round OX and OY, the differences, representing

the residual turning tendencies on E as a rigid body, are as

follows :

ffrom
sides PQ, Q P , ^ Sy.Sx,

round OX, \

[from
sides PQ, Q P ,

~
Sy.Sx,

round OY, J

fd\. dn.\
or in all, round UA, (

^ + -= I bxby,

&quot;

The equations of equilibrium, therefore, between these and the Equations

applied forces on E treated as a rigid body give, if we remove plate bent

the common factor, SxSy, forces.

*;i&quot;Sdx dy

dU dK A j-+- =
dy dx j
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Equations
of stress in

plate bfiit

by any
forces.

Equations
connecting
stress and
curvature.

Partial dif
ferential

equation of
the bent
surface.

Boundary
conditions;

(2).

The first of these, with a and ft replaced in it by their A^alues

from the second and third, becomes

fOS o ^n d*^-7 dM dL
dx* dxdy dy

z
~ ~

dx dy

Now K, X, & denoting component curvatures of the plate, accord

ing to the system of 639, we have of course

_(Fz x _d*j& &amp;lt;?*_

&quot;~~dx*&amp;gt; ~djf ~dxfy ^
and hence (10) of 641 give

A
d*z d*z . d*zK = A-r-^ +C-J-2 + b

1
.

dx dy dxdy
d2

z ^d2
z d2

z

OTT . d2
z d2

z
211 = b -7-J+ a-r-2 +dx2

dy
2

dxdy
, &amp;lt;Pz

dxdy

Using these in (2) we find the required differential equation of

the disturbed surface. On the general supposition ( 643) we
must regard -4, B, (7, a, b, c as given functions of x and y.

In the important practical case of a homogeneous plate they are

constants ;
and the required equation becomes the linear partial

differential equation of the fourth order with constant coeffi

cients, as follows :

dx4
-

dx*dy

d4
z dM

-
3

dx*dy* dxdy
3

dL

dy

For the case of equal flexibility in all directions, according to

642 (13), this becomes

or

(6).

645. To investigate the boundary conditions for a plate of

limited dimensions, we may first consider it as forming part of

an infinite plate bounded by a normal surface drawn through a

closed curve traced on its middle surface. The preceding in

vestigation leads immediately to expressions for the force and

couple on any portion of the normal bounding surface. If then
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the portion in question be actually cut out from the surround- Boundary

ing sheet, and if a distribution of force and couple identical

with that so found be applied to its edge, its elastic condition

will remain absolutely unchanged throughout up to the very
normal edge. To fulfil this condition requires three equations,

expressing (1) that the shearing force applied to the edge (that Poisson s

is, the applied tangential force in the normal surface constitut

ing the edge), which is necessarily in the direction of the

normal line to the plate, must be equal to the required amount,

and (2) and (3) that the couple applied to any small part of the

edge must have components of the proper amounts round any
two lines in the plane of the plate. These three equations

were given by Poisson as necessary for the full expression of

the boundary condition
;
but Kirchhoff has demonstrated that two suffl-

they express too much, and has shown that two equations

suffice. This we shall prove by showing that when a finite

plate is given in any condition of stress, or free from stress, we

may apply, round axes everywhere perpendicular to its normal

surface-edge, any arbitrary distribution of couple without pro

ducing any change except at infinitely small distances from

the edge, provided a certain distribution of force also, calcu

lated from the distribution of couple, be applied to the edge,

perpendicularly to the plate.

Let XY, =Ss, be an infinitely small element at a point (x, y)

of a curve traced on the middle surface of an

infinite plate; and, PJTand PY being parallel

to the axes of x and y, let YXP =
&amp;lt;. Then,

if 8$ denote the shearing force in the normal

surface to the plate through Ss, and, as before

( 644), a . PY and /? . PX be those in normal

surfaces through PY and PX, we must have,

for the equilibrium of the triangle YPX
supposed rigid ( 564),

Using here for a and ft their values by (1) of 644, we have
*

Kirchhoff s
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Kirchhoirs

equations

gated.

Next, if GSs and H&s denote the components round XY, and

round an axis perpendicular to it in the plane of the plate, of

the couple acting across the normal surface through Ss, we have

[(2) of 637],

G = Acos2
c + 2Q sin

&amp;lt;/&amp;gt;cos&amp;lt;/&amp;gt;

-I- K sin
2

&amp;lt; (2),

#=(K-A)sin(cos&amp;lt; + n(cos
2

&amp;lt;-sin
2

&amp;lt;)

........... (3).

If (, G,H) denoted the action experienced by the edge in virtue

of applied forces, all the plate outside a closed curve, of which Ss

is an element, being removed, these three equations would ex

press the same as the three boundary equations given by Poisson.

Lastly, let
%&amp;gt;$s, 08s, $?Ss denote the force perpendicular to the

plate, and the components of couple, actually applied at any

point (x, y) of a free edge on the length 8s of the middle curve.

As we shall immediately see
( 648), if

*-Ct&amp;lt;-^)-0 ..................... (4),

Distribu-

ihea?hig

minld,
ete &quot;

of
S

coiPie
lon

perpen-

boundary,

the plate will be in the same condition of stress throughout, ex

cept infinitely near the edge, as with (, G, H) for the action on

the edge. Hence, eliminating and H between these four equa

tions, there remain to us (2) unchanged and another, or in all

these two

(r = A cos
2

&amp;lt; + 211 sin &amp;lt; cos &amp;lt; + K sin
2

&amp;lt;,

and \

+
^+^)sin0~(L

+^+^
which are Kirchhoff s boundary equations.

646. The proposition stated at the end of last section is

equivalent to this: That a certain distribution of normal

shearing force on the bounding edge of a finite
plate may be

determined which shall produce the same effect as any given

distribution of couple, round axes everywhere perpendicular to

the normal surface supposed to constitute the edge. To prove

this let equal forces act in opposite directions in lines EF, E F
on each side of the middle line and parallel to it, constituting

the supposed distribution of couple. It must be understood

that the forces are actually distributed along their lines of

action, and not, as in the abstract dynamics of ideal rigid bodies,

applied indifferently at any points of these lines; but the
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amount of the force per unit of length, though equal in the

neighbouring parts of the two lines, must differ from point to

point along the edge, to constitute any other than a uniform

distribution of couple. Lastly,

we may suppose the forces in

the opposite directions to be not

confined to two lines, as shown

in the diagram, but to be diffused

over the two halves of the edge
on the two sides of its middle

line
;
and further, the amount of

them in equal infinitely small

breadths at different distances

from the middle line must be

proportional to these distances,

as stated in 634 (3), if the given
distribution of couple is to be thoroughly such as H of 645.

Let now the whole edge be divided into infinitely small

rectangles, such as ABGD in the diagram, by lines drawn per

pendicularly across it. In one of these rectangles apply a

balancing system of couples consisting of a diffused couple

equal and opposite to the part of the given distribution of

couple belonging to the area of the rectangle, and a couple
of single forces in the lines AD, CB, of equal and opposite
moment. This balancing system obviously cannot cause any
sensible disturbance (stress or strain) in the plate, except
within a distance comparable with the sides of the rectangle ;

and, therefore, when the same thing is done in all the rectangles
into which the edge is divided, the plate is only disturbed to

an infinitely small distance from the edge inwards all round.

But the given distribution of couple is thus removed (being

directly balarce 1 by a system of diffused force equal and

opposite everywhere to that constituting it), and there remains

only the set of forces applied in the cross lines. Of these there

are two in each cross line, derived from the operations per
formed in the two rectangles of which it is a common side, and

their difference alone remains effective. Thus we see that if

the given distribution of couple be uniform along the edge, it

Distribu
tion of

shearing
force deter
mined,
which
produces
same flexure
as a given
distribution
of couple
round axes

perpen
dicular to

boundary.
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may be removed without disturbing the condition of the plate

except infinitely near the edge : in other words,

Uniform 647. A uniform distribution of couple alonq the whole edae
distriOUtiOU --...I 7 J .il. 1 /-,! 7
of twisting of a finite plate, everywhere round axes in me plane of the plate,
couple pro- , ,. , , -, 7 . ,

duces no and perpendicular to the edge, produces distortion, spreading to

only infinitely small distances inwards from the edge all round,

and no stress or distortion of the plate as a whole. The truth of

this remarkable proposition is also obvious when we consider

that the tendency of such a distribution of couple can only be

to drag the two sides of the edge infinitesimally in opposite

directions round the area of the plate. Later
( 728) we shall

investigate strictly the strain, in the neighbourhood of the edge,

produced by it, and we shall find
( 729) that it diminishes with

extreme rapidity inwards from the edge, becoming practically in

sensible at distances exceeding twice the thickness of the plate.

The distri- 648. A distribution of couple on the edge of a plate, round

sheS? axes everywhere in the plane of the plate, and perpendicular to

produce^ the edge, of any given amount per unit of length of the edge, may
as from dis- be removed, and, instead, a distribution offorce perpendicular to
tribution of , 7 / j T

twisting the plate, equal in amount per unit length oj trie edge, to the rate

of variation per unit length of the amount of the couple, without

altering the flexure of the plate as a whole, or producing any dis

turbance in its stress or strain except infinitely near the edge.

In the diagram of 646 let AJS = Ss. Then if H be the

amount of the given couple per unit length along the edge, be

tween AD, BG, the amount of it on the rectangle ABGD is HSs,

and therefore Zfmust be the amount of the forces introduced along

AD, GB, in order that they may constitute a couple of the requi

site moment. Similarly, ifH Ss denote the amount of the couple

in the contiguous rectangle on the other side of BC, the force in

BG derived from it will be H in the direction opposite to H.

There remains effective in BG a single force equal to the differ

ence, H -H.

If from A to B be the direction in which we suppose s, a length

measured along the edge from any zero point, to increase, we have

H -HA.
ds
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Thus we are left with single forces, equal to =- Ss, applied in

shearing
lines perpendicularly across the edge, at consecutive distances forc

.f
thatr * produces

os from one another : and for this we may substitute, with- same flexure
. .

* as from dis-

out causing disturbance except infinitely near the edge, a con- tributionof

tinuous distribution of transverse force, amounting to dHjds per couple-

unit length ;
which is the proposition to be proved. The direc

tion of this force, when dH/ds is positive, is that of z negative :

whence immediately the form of it expressed in (4) of 645.

649. As a first example of the application of these equa- case of cir-

tions, we shall consider the very simple case of a -uniform

plate of finite or infinite extent, symmetrically influenced in

concentric circles by a load distributed symmetrically, and by

proper boundary appliances if required.

Let the origin of co-ordinates be chosen at the centre of sym
metry, and let r, be polar co-ordinates of any point P, so that

x = r cos 0, y = r sin 0.

The second member of (6), 644, will be a function of r, which

for brevity we may now denote simply by Z (being the amount
of load per unit area when the applied forces on each small part

are reducible to a single normal force through some point of it).

Since z is now a function of r, and, as we have seen before

[49 l(e)],

2 _ 1 d f du\
~

r dr\ drj

when u is any function of r, equation (6) of 644 becomes

A d ( d Tl d
r c

Hence

z=*\ f ( r (
~ (rZdr + W(logr-l)r

3+W f

r2

+C&quot;logr+C &quot;...(2),AJ r J J r J

which is the complete integral, with the four arbitrary constants

explicitly shown. The following expressions, founded on inter

mediate integrals, deserve attention now, as promoting a thorough

comprehension of the solution
; and some of them will be required

later for expressing the boundary conditions. The notation of

(7) will be explained in 650 :

VOL. II. 13
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Plate /inclination, divided by radius
; or curvature in\

V normal sectioii perpendicular to radius /

(curvature in radial section) 1

(sum of curvatures in rectangular sections) \

dr
7
2
s = i

f~frZdr+Clogr

d?z dz

...(6),

d2
z . dz

-
dr r dr/ dr dr

v

A
..........

(
8
)I f-

rj
- rZdr + C-
rj r

Of these (6) and (8) express, according to the notation of 645,

the couple and the shearing force acting on the normal surface

cutting the middle surface of the plate in the circle of radius r.

They are derivable analytically from our solution (2) by means of

(2), (3), and (1) of 645, with (4) of 644, and- (15) of 642.

The work is of course much shortened by taking 2/
=

0, and

x = r, and using (3) and (4) of the present section. The student

may go through this process, with or without the abbreviation, as

an analytical exercise
;
but it is more instructive, as well as more

direct, to investigate ab initio the equilibrium of a plate sym

metrically strained in concentric circles, and so, in the course

of an independent demonstration of (6) 644, for this case,

or (1) 649, to tind expressions for the flexural and shearing

stresses.



650.] STATICS. 195

650. It is clear that, in every part of the plate, the normal
- A ,,

. , . . dent inves-

sections (8 637) of maximum and minimum, or minimum and tigation for

.
circular

maximum, bending couples are those through and perpen-
strain.

dicular to the radius drawn from the centre of symmetry.
At distance r from 0, let L and G be the bending couples in

the section through the radius, and in the section perpen
dicular to it

;
so that, if X and K be the curvatures in theso

sections, we have, by (10) of 641 and (15) of 642,

Let also f be the shearing force
( 616, footnote) in the

circular normal section of radius r. The symmetry requires
that there be no shearing force in radial normal sections.

Considering now an element, E, bounded by two radii

making an infinitely small angle SO with one another, and

two concentric circles of radii r ^Br and r + JSr; we see

that the equal couples LBr on its radial normal sections, round

axes falling short of direct opposition by the infinitely small

angle $0, have a resultant equal. to LBrB0 round an axis per

pendicular to the middle radius, in the negative direction when
L is positive; and the infinitely nearly equal couples on its

outer and inner circular edges have a resultant round the same

axis, equal to -y- (GrB0) Br, being the difference of the values taken

by GrB0 when r Sr and r + ^Br are put for r. There is also

the couple of the shearing forces on the outer and inner edges,.

each infinitely nearly equal to rS0
;

of which the moment is

rB0Br. Hence, for the equilibrium of E under the action of

these couples,

- LBrB0 + ~ (Gr) SrS0 + frS08r = 0,

(10),

if, as we may now conveniently do, we suppose no couples to

be applied from without to any part of the plate except its

bounding edges. Again, considering normal forces on E
t
we

13 -a
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dentinves- have -v- (Er$0} Br for the sum of those acting on it from the con-
tigation for dr ^
circular
strain. tiguous matter of the plate, and ZrSd&r from external matter

if, as above. Z denote the amount of applied normal force per

unit area of the plate. Hence, for the equilibrium of these

forces,

(11).

Substituting for fin (11) by (10) ;
for L and G in the result

by (9) ; and, in the result of this, for X and K their expressions

by the differential calculus, which are dz/rdr and d2

z/dr*, since

the plate is a surface of revolution differing infinitely little from

a plane perpendicular to the axis, we arrive finally at (1) the

differential equation of the problem. Of the other formulas of

649, (6), (7), (8) follow immediately from (9) and (10) now

proved : except H = 0, which follows from the fact that the

radial and circular normal sections are the sections of maximum
and minimum, or minimum and maximum, curvature.

interpre- 651. We are now able to perceive the meaning of each of
tationof .

terms m the four arbitrary constants.
integral.

J

(1) C &quot;

is of course merely a displacement of the plate

without strain.

(2) C&quot; log r is a displacement which produces anticlastic

curvature throughout, with +
(7&quot;/r

2
for the curvatures in the two

principal sections : corresponding to which the bending couples,

L, 6r, are equal to +
(A c) C&quot;/r

z
. An infinite plane plate, with

a circular aperture, and a uniform distribution of bending couple

applied to the edge all round, in each part round the tangent as-

axis, would experience this effect
;
as we see from the fact that

the stress in the plate, due to
C&quot;,

diminishes according to the

inverse square of the distance from the centre of symmetry.
It is remarkable that although the absolute value of the deflec

tion, C&quot; log r, is infinite for infinite values of r, the restrictive

condition (3) of 632 is not violated provided C&quot; is infinitely

small in comparison with the thickness : and it may be readily

proved that the law (1) of 633 is, in point of fact, fulfilled by
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this deflection, even if the whole displacement has rigorously interpret
J , .

-, , T . . , . , ,. .

* tationof
this value, C log r, and is precisely in the direction perpen- terms in

dicular to the undisturbed plane. For this case f=0, or there

is no shear.

(3) JCV is a displacement corresponding to spherical

curvature : and therefore involving simply a uniform syiiclastic

stress
[

638 (1)], of which the amount is of course
[ 641

(10) or (11)] equal to A+c divided by the radius of curva

ture, or (A + c) x
, agreeing with the equal values given

for L and G by (6) and (7) of 649. In this case also f = 0, or

there is no shearing force. A finite plate of any shape, acted

on by a uniform bending couple all round its edge, becomes

bent thus spherically.

(4) %C(log r l)r
2

is a deflection involving a shearing force

equal to AC/r, and a bending couple,

in the circle of distance r from the centre of symmetry.

652. It is now a problem of the merest algebra to find Symmetri-

the flexure of a flat ring, or portion of plane plate bounded by of flat rim?.

two concentric circles, when acted on by any given bending

couples and transverse forces applied uniformly round its

outer and inner edges. For equilibrium, the forces on the

outer and inner edges must be in contrary directions, and of

equal amounts. Thus we have three arbitrary data: the

amounts of the couple applied to the two edges, each reckoned

per unit of length, and the whole amount, F, of the force on

either edge. By (4), 651, or (8) of 649, we see that

and there remain unknown the two constants, C and
C&quot;,

to be

determined from the two equations given by putting the ex

pression for 6r [(6) of 649] equal to the equal values for the

values of r at the outer and inner edges respectively.

Example. A circular table (of isotropic material), with a

concentric circular aperture, is supported by its outer edge,
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Symmetri- which rests simply on a horizontal circle
;
and is deflected by

a load uniformly distributed over its inner edge (or vice versd,

inner for outer). To find the deflection due to this load (which

of course is simply added to the deflection due to .the weight,

determined below). Here G must vanish at each edge.

The radii of the outer and inner edges being
: and a

,
the

equations are

$C{(A 4-
c) log a + $(A -c)} +& (A + c)

-
C&quot;(A-c) ^

=
0,

and the same with a for a. Hence

Flexure of
flat ring
equilibrated
by forces

symmetri-

buted^vet
its edges ;

_,.,. . v/1 1 \ i /&amp;gt;/ A N1 Q&amp;gt;

C&quot;(A-c)
-

3
- -

2 )
= - *C(A + c) log

-
,v

\a
a a2

/
_,

\G (A + c) (a
2 - a 2

) =-%C[(A+c) (a
2
log a - a 2

log a ) + l(A-c) (a
2 -

a*)] :

and thus, using for C its value (12), we find [(2) 649]

Putting the factor of r
2
into a more convenient form, and assign

ing C
&quot;

so that the deflection may be reckoned from the level of

the inner edge, we have finally

F (, ( . r a2
. a

,
3A+c\ 3

*= &quot;

log + * log + * r

r . a a&quot; . a,-
i r log

- ,2) ,,-.2

(13).

Towards showing the distribution of stress through the breadth

of the ring, we have from this, by 649 (6), v
2 2

which, as it ought to do, vanishes when r - a
,
and when r = a.

Further, by 649 (8),

which shows that, as is obviously true, the whole amount of the

transverse force in any concentric circle of the ring is equal to F.
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653. The problem of 652, extended to admit -a load dis- and with

tributed in any symmetrical manner over the surface of the metrically

ring instead of merely confined to one edge, is solved its area,

algebraically in precisely the same manner, when the terms

dependent on Z
}
and exhibited in the several expressions of

649, are found by integration. One important remark we

have to make however : that much needless labour is avoided

fay treating Z as a discontinuous function in these integrations

in cases in which one continuous algebraic or transcendental

function does not express the distribution of load over the

whole portion of plate considered. Unless this plan were

followed, the expression for z, dzjdr, G, and f, would have to be

worked out separately for each annular portion of plate through
which Z is .continuous, and their values equated on each side

of each separating circle. Hence if there were i annular

portions to be thus treated separately there would be 4i

arbitrary constants, to be determined by the 4 (i 1) equations

so obtained, and the 4 equations expressing that at the outer

and inner bounding circular edges G has the prescribed values

(whether zero or not) of the applied bending couples, and that

2 and f have each a prescribed value at one or other of these

circles. But by the more artful method (due to Fourier and

Poissori), the complication of detail required in virtue of the

discontinuity of Z is confined to the successive integrations;

and the arbitrary constants, of which there are now but four,

are determined by the conditions for the two extreme bounding v

edges.

Example. A circular table (of isotropic material), with a

concentric circular aperture, is borne by its outer or inner edge
which rests simply on a horizontal circular support, and is

loaded by matter uniformly distributed over an annular area of

its surface, extending from its inner edge outwards to a con

centric circle of given radius, c. It is required to find the

flexure.

First, supposing the aperture filled up, and the plate uniform

from outer edge to centre, let the whole circle of radius c be

uniformly loaded at the rate w, a constant, per unit of its area.
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We have

When r=0

JrZdr--

Circular
table of

isotropio
material,
supported
Eymmetri-
cally on its

edge, and
ttrained

only by its

own weight.

in. IV.

2r2
log ~

v.

c2
log

Of these results, v. used in (2) gives the general solution; and

IV., in., and II. in (6) and (8) give the corresponding expressions

for G and . If, first, we suppose the value of G thus found to

have any given value for each of two values, r\ r&quot;,
of r, and to

have a given value for one of these values of r, we have three

simple algebraic equations to find (7, (7, C&quot; ,
and we solve a more

general problem than that proposed ;
to which we descend by

making the prescribed values of G and zero. The power of

mathematical expression and analysis in dealing with discon

tinuous functions, is strikingly exemplified in the applicability

of the result not only to the contemplated case, in which c is in

termediate between r and r&quot;
;
but also to cases in which c is less

than either (when we fall back on the previous case, of 652),

or c greater than either (when we have a solution more directly

obtainable by taking Z= w for all values of
r).

If the plate is in reality continuous to its centre, and uniformly

loaded over the whole area of the circle of radius c, we must

have (7 = and C&quot;
= to avoid infinite values of and G at the

centre : and the equation G = for the outer boundary of the

disc gives C at once, completing the determination. If, lastly,

we suppose c to be not less than the radius of the disc, we have

the solution for a uniform circular disc uniformly supported

round its edge, and strained only by its own weight.

Reduction 654. If now we consider the general problem, to deter-

piobi

n
em

a
to mine the flexure of a plate of any form, with an arbitrary

ioiov?r distribution of load over it, and with arbitrary boundary
^^

appliances, subject of course to the condition that all the

applied forces, when the data are entirely of force, must con-
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stitute an equilibrating system ;
we may immediately reduce Reduction

this problem to the simpler one in which there is no load proSito

distributed over the area, but arbitrary boundary appliances load over

only. We shall merely sketch the mathematical investigation.

First it is easily proved, as for a corresponding expression for

three independent variables in 491 (c), that

2,rp .............. .(1),

where p is any function of two independent variables, a;
, y \

p the same function of a?, y; D denotes J{(x x
)

2 + (y y )

2

} ;

and JJ denotes integration over an area comprehending all values

of x
t y t

for which p does not vanish. Hence

*)
if u=-2 ffdx dy logDffdx&quot;dy

r Z logl) .......... (3),

where D =
J{(x&quot;

-x
)

2 + (y&quot;-yj} ,
and if Z&quot; and Z denote

the values for
(x&quot;, y&quot;)

and
(x, y} of any arbitrary function of two

independent variables. Let this function denote the amount of

load per unit of area, which we may suppose to vanish for all

values of the co-ordin-dtes not included in the plate; and to avoid

trouble regarding limits, let all the integrals be supposed to

extend from -co to + GO . We thus have, in z = u, a solution

of our equation (2): and therefore z u must satisfy the same

equation with the second member replaced by zero : or, if j

denote a general solution of

then z u + ? ................................. (5)

is the general solution of (2). The boundary conditions for \ are

of course had by substituting u+i for z in the directly prescribed

boundary equations, whatever they may be.

655. Mathematicians have not hitherto succeeded in solving Fiatcircu-

this problem with complete generality, for any other form of oniycase
e

plate than the circular ring (or circular disc with concentric solved.

circular aperture). Having given ( 640, 653) a detailed
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Fiatcircu- solution of the problem for this case, subject to the restriction of

only case symmetry, we shall merely indicate the extension of the analysis
solved. to include any possible non-symmetrical distribution of strain.

The same analysis, under much simpler conditions, will occur to

us again and again, and will be on some points more minutely

detailed, when we shall be occupied with important practical

problems regarding electric influence, fluid motion, and electric

and thermal conduction, through cylindrical spaces.

Taking the centre of the circular bounding edges as origin for

polar co-ordinates, let
lj

x rcosO, /;=rsin0.

We easily find by transformation

3

l _!/ d\\ 1 tf\

f &quot;r dr \dr) r2 dO*~

If we put lctgr
= $, or r^=c* ...... ..... .. ............. .(7),

dxz

Hence if, as before, v
2 denote

2
+

y ,

^ / d
2 d2

This equated to zero gives

if v denote any solution of

d V

We shall see, when occupied with the electric and other problems

referred to above, that a general solution of this equation, appro

priate for our present problem as for all involving the expression

of arbitrary functions of for particular values of &, is
J

v = 5{(^i cos iO +^ sin iO) &amp;lt;?* + (^cos iO + iJ^sin ^)e~^}. ..(12),
o

D HiJ.

where ^4,, J5
4 ,

,

i3&amp;lt;
are constants. That this is a solution, is

of course verified in a moment by dineren.tiation,. From it. we
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readily find (and the result of course is verified also by diffe

rentiation),

1 , . iJ_v* . -r. _ .^ ff+2^|sn

Flat circu
lar ring the

only case
hitherto
solved.

.
cosifl + B; sin 10) e

~
(*~ 2)H -

\ (^.cos + 3^ sin

(18),

v being any solution of (11), which may be conveniently taken

as given by (12) with accented letters A.
, etc., to denote four

new constants. If now the arbitrary periodic functions of 0,

with 2ir for period, given as the values whether of displacement,

or shearing force, or couple, for the outer and inner circular

edges, be expressed by Fourier s theorem
[

77 (14)] in simple
harmonic series; the two equations [

645 (5)] for each edge,

applied separately to the coefficients of cosiO and siuiO in the

expressions thus obtained, give eight equations for determining
the eight constants A

t
3& A!,

656. Although the problem of fulfilling arbitrary boundary
conditions has not yet been solved for rectangular plates, there

is one remarkable case of it which deserves particular notice;

not only as interesting in itself, and important in practical

application, but as curiously illustrating one of the most

difficult points

[646, 648] of the &quot;P

general theory. A
rectangular plate

acted on perpen

dicularly by a

balancing system
of four equal pa
rallel forces ap

plied at its four

corners, becomes strained to a condition of uniform anti-

clastic curvature throughout, with the sections of no-flexure

parallel to its sides, and therefore with sections of equal oppo
site maximum curvature in the normal planes inclined to the

sides at 45. This follows immediately from 648, if we

suppose the corners rounded off ever so little, and the forces

diffused over them. - :-J \ us i;;;j io .;:,:;; ;j

Rectangu
lar plate,
held ar.d
loaded by
diagonal
pairs of

corners.
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Rectangu- Or, in each of an infinite number of normal lines in the edge
lar plate,
held and AB, let a pair of opposite forces each equal to |P be applied;

diagonal which cannot disturb the plate. These, with halves of the single

corners. forces P in the dissimilar directions at the corners A and B, con

stitute a diffused couple over the whole edge AB, amounting in

moment per unit of length to JP, round axes perpendicular

to the plane of the edge. Similarly, the other halves of the

forces P at the corners A, B, with halves of those at G and

D and introduced balancing forces, constitute diffused couples

over the edges CA and DB
; and the remaining halves of the

corner forces at G and D, with introduced balancing forces, con

stitute a diffused couple over CD; each having JP for the

amount of moment per unit length of the edge over which it is

diffused. Their directions are mutually related in the manner

specified in 638 (2), and thus taken all together, they constitute

an anticlastic stress of value O = JP. Hence
( 642) the result

is uniform anticlastic strain amounting to ^P/k, and having its

axes inclined at 45 to the edges ;
that is to say ( 639), a flexure

with maximum curvatures on the two sides of the tangent

plane each equal to J P/k, and in normal sections in the positions

stated.

Transition 657 Few problems of physical mathematics are more
to finite

r J
.

flexures in- curious than that presented by the transition from this solu-
dicated. * *

tion, founded on the supposition that the greatest deflection

is but a small fraction of the thickness of the plate, to the

solution for larger flexures, in which corner portions will bend

approximately as developable surfaces (cylindrical, in fact), and

a central quadrilateral part will remain infinitely nearly plane;

and thence to the extreme case of an infinitely thin perfectly

flexible rectangle of inextensible fabric. This extreme case may
be easily observed and experimented on by taking a carefully

cut rectangle of paper ( 145), supporting it by fine threads

attached to two opposite corners, and kept parallel, while two

equal weights are hung by threads from the other corners.

Transmis- 658. The definitions and investigations regarding strain of

through n RR 154 190 constitute a kinematical introduction to the theory
elastic solid.

bb

of elastic solids. We must now, in commencing the elementary

dynamics of the subject, consider the forces called into play
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through the interior of a solid when brought into a condition of Tn

strain. We adopt, from Rankine*, the term stress to designate through an

\ . .
elastic solid.

such forces, as distinguished from strain defined
( 154) to ex

press the merely geometrical idea of a change of volume or

figure.

659. When through any space in a body under the action

of force, the mutual force between the portions of matter on the

two sides of any plane area is equal and parallel to the mutual

force across any equal, similar, and parallel plane area, the stress

is said to be homogeneous through that space. In other words,

the stress experienced by the matter is homogeneous through

any space if all equal similar and similarly turned portions of

matter within this space are similarly and equally influenced by
force.

660. To be able to find the distribution of force over the Force trans
mitted

surface of any portion of matter homogeneously stressed, we
must know the direction, and the amount per unit area, of the eiasticsoiid.

force across a plane area cutting through it in any direction.

Now if we know this for any three planes, in three different

directions, we can find it for a plane in any direction, as we see

in a moment by considering what is necessary for the equili

brium of a tetrahedron of the substance. The resultant force on

one of its faces must be equal and opposite to the resultant of

the forces on the three others, which is known if these faces are

parallel to the three planes for each of which the force is given.

661. Hence the stress, in a body homogeneously stressed, is speciflca-

completely specified when the direction, and the amount per unit stress;

area, of the force on each of three distinct planes is given. It is,

in the analytical treatment of the subject, generally convenient

to take these planes of reference at right angles to one another.

But we should immediately fall into error did we not remark

that the specification here indicated consists not of nine but in by six hide-

reality only of six independent elements. For if the equili-
elements.

brating forces on the six faces of a cube be each resolved into

three components parallel to its three edges OX, OY, OZ, we

have in all 18 forces; of which each pair acting perpendicularly

*
Cambridge and Dublin Mathematical Journal, 1850.
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Relations
between
pairs of

tangential
tractions

necessary
for equili
brium.

Specifica
tion of a
stress; by six

indepen
dent ele

ments:
three simple
longitudinal
stresses,
end three

simple
shearing
stresses.

Simple lon

gitudinal,
and shear

ing, stresses.

Force
across any
surface in
terms of

rectangular
specifica
tion of

on a pair of opposite faces, being equal and directly opposed,

balance one another. The twelve tangential components that

remain constitute three pairs of couples having their axes in the

direction of the three edges, each

of which must separately ,be in

equilibrium. The diagram shows

the pair of equilibrating couples

having OF for axis; from the

consideration of which we infer

that the forces on the faces (zy),

parallel to OZ, are equal to the

forces on the faces (yx), parallel

to OX. Similarly, we see that

the forces on the faces (yx), paral

lel to Y, are equal to those of the faces (xz), parallel to OZ;

and that the forces on (xz), parallel to OX, are equal to those

on (zy), parallel to OY.

662. Thus, any three rectangular planes of reference being-

chosen, we may take six elements thus, to specify a stress: P, Q,

R the normal components of the forces on these planes; and S
t

T, U the tangential components, respectively perpendicular to

OX, of the forces on the two planes meeting in OX, perpendicu

lar to OY, of the forces on the planes meeting in OF, and per

pendicular to OF, of the forces on the planes meeting in OF; each

of the six forces being reckoned per unit of area. A normal com

ponent will be reckoned as positive when it is a traction tending

to separate the portions of matter on the two sides of its plane.

P, Q, R are sometimes called longitudinal stresses, sometimes

simple normal tractions, and S, T, U shearing stresses.

From these data, to find in the manner explained in 660, the

force on any plane, specified by I, m, n, the direction-cosines of

its normal ;
let such a plane cut OX, Y, OZ in the three points

X, Y, Z. Then, if the area XYZ be denoted for a moment by

A, the areas YOZ, ZOX, XOY, being its projections on the three

rectangular planes, will be respectively equal to Al, Am, An.

Hence, for the equilibrium of the tetrahedron of matter bounded

by those four triangles, we have, if F, G, H denote the com-
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ponents of the force experienced by the first of them, XY2, per Force
., ~

, across any
Unit Of Its area, surface in

terms of

j- ; F . A = P. IA + U. mA + T . nA, rectangular
specifica-

and the two symmetrical equations for the components parallel te stress.

07 and OZ. Hence, dividing by A, we conclude

F = Pl+ Urn + Tn\

G = Ul + Qm + Sn\ .................... (1).

These expressions stand in the well-known relation to the

ellipsoid

px* + Qy*+ Kz*+ 2(Syz + Tzx+l
r
xy) = I ......... (2),

according to which, if we take

x = lr, y mr, z = nr,

and if X, /x, v denote the direction-cosines and p the length of the

perpendicular from the centre to the tangent plane at (x, y, z) of

the ellipsoid, we have

pr pr pr
We conclude that

663. For any fully specified state of stress in a solid, a stress-

quadric surface may always be determined, which shall represent
ql

the stress graphically in the following manner:

To find the direction, and the amount per unit area, of the

force acting across any plane in the solid, draw a radius per

pendicular to this plane from the centre of the quadric to its

surface. The required force will be equal to the reciprocal of

the product of the length of this radius into the perpendicular
from tbe centre to the tangent plane at the extremity of the

radius, and will be perpendicular to this tangent plane.

664. From this it follows that for any stress whatever there Principal

are three determinate planes at right angles to one another such axes of a

that the force acting in the solid across each of them is precisely

perpendicular to it. These planes are called the principal or

normal planes of the stress; the forces upon them, per unit area,

its principal or normal tractions; and the lines perpendicular
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Principal to them, its principal or normal axes, or simply its axes. The
axes of a three principal semi-diameters of the quadric surface are equal

to the reciprocals of the square roots of the principal tractions.

If, however, in any case each of the three principal tractions

is negative, it will be convenient to reckon them rather as

pressures; the reciprocals of the square roots of which will be

the semi-axes of a real stress-ellipsoid representing the distri

bution of force in the manner explained above, with pressure
substituted throughout for traction.

Varieties 665. When the three principal tractions are all of one sign,
of stress-

quadric. the stress-quadric is an ellipsoid; the cases of an ellipsoid of

revolution and a sphere being included, as those in which two,

or all three, are equal. When one of the three is negative and

the two others positive, the surface is a byperboloid of one sheet.

When one of the normal tractions is positive and the two others

negative, the surface is a hyperboloid of two sheets.

666. When one of the three principal tractions vanishes,

while the other two are finite, the stress-quadric becomes a

cylinder, circular, elliptic, or hyperbolic, according as the other

two are equal, unequal, of one sign, or of contrary signs. When
two of the three vanish, the quadric becomes two planes; and

the stress in this case is
( 662) called a simple longitudinal

stress. The theory of principal planes, and principal or normal

tractions, just stated
( 664), is then equivalent to saying that

any stress whatever may be regarded as made up of three

simple longitudinal stresses in three rectangular directions.

The geometrical interpretations are obvious in all these cases.

Composition 667. The composition of stresses is of course to be effected

by adding the component tractions thus: If (PV Q,\,
Rv Sv Tv CT

t),

(P2 , Q2)
R 8V Tv Cy, etc., denote, according to 662, any

given set of stresses acting simultaneously in a substance, their

joint effect is the same as that of a single resultant stress of

which the specification in corresponding terms is (2P, 2Q, ZR,

668. Each of the statements that have now been made (

Stress com- 659, 667) regarding stresses, is applicable to infinitely small

strains, if for traction perpendicular to any plane, reckoned per
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unit of its area, we substitute elongation, in the lines of the

traction, reckoned per unit of length; and for half the tangential
stress com-

traction parallel to any direction, shear in the same direction

reckoned in the manner explained in 175. The student will

find it a useful exercise to study in detail this transference of

each one of those statements, and to justify it by modifying in

the proper manner the results of 171, 172, 173, 174, 175,

185, to adapt them to infinitely small strains. It must be re

marked that the strain-quadric thus formed according to the

rule of 663, which may have any of the varieties of character

mentioned in 665, 666, is not the same as the strain-ellipsoid

of 160, which is always essentially an ellipsoid, and which, for

an infinitely small strain, differs infinitely little from a sphere.

The comparison of 172, with the result of 661 regarding

tangential tractions, is particularly interesting and important.

669. The following schedule of the meaning of the elements

constituting the corresponding rectangular specifications of a

strain and stress explained in preceding sections, will be found

convenient:

Kectangular
elements of
strains and

Comp(
of

strain.
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Work done the component forces P, U, T parallel to OX, U and T do no

within a work in virtue of this strain. Similarly Qf, Rg are the works

solid. done if, the same stress acting, infinitesimal strains f or g are

produced, either of them alone. Again, if the cube experiences

a simple shear, a, whether we regard it
( 172) as a differential

sliding of the planes yx, parallel to y, or of the planes zx,

parallel to z
y
we see that the work done is So, : and similarly,

Tb if the strain is simply a shear b
} parallel to OZ, of planes zy,

or parallel to OX, of planes xy : and Uc if the strain is a shear c,

parallel to OX, of planes xz, or parallel to OY, of planes yz.

Hence the whole work done by the stress (P, Q, R, S&amp;gt; T, U) on

a unit cube taking the additional infinitesimal strain
(e. f, g,

a, b, c), while the stress varies only infinitesimally, is

Compare Pe + Qf+ Rg + S(l + Tb + Uc ............... (3).
673, (20)

It is to be remarked that, inasmuch as the action called a stress

is a system of forces which balance one another if the portion

of matter experiencing it is rigid, it cannot
( 551) do any work

when the matter moves in any way without change of shape:

and therefore no amount of translation or rotation of the cube

taking place along with the strain can render the amount of

work done different from that just found.

If the side of the cube be of any length p, instead of unity,

each force will be p
2
times, and each relative displacement p

times; and therefore the work done p
9 times the respective

amounts reckoned above. Hence a body of any shape, and

of cubic content C, subjected throughout to a uniform stress

(P, Q, R, S, T, U) while taking uniformly throughout an ad

ditional strain (e,f, g, a, b, c), experiences an amount of work

equal to

Work done It is to be remarked that this is necessarily equal to the work

face of a
&quot;

done on the bounding surface of the body by forces applied to it

solid. from without. For the work done on any portion of matter

within the body is simply that done on its surface by the matter

touching it all round, as no force acts at a distance from without

on the interior substance. Hence if we imagine the whole body
divided into any number of parts, each of any shape, the sum



670.] STATICS. 211

of the works done on all these parts is. by the disappearance of Work done
, ... , _ onthesur-

equal positive and negative terms expressing the portions of the face of a

work done on each part by the contiguous parts on all its sides,
soiiS

ng

and spent by these other parts in this action, reduced to the

integral amount of work done by force from without, applied all

round the outer surface.

The analytical verification of this is instructive with regard to

the syntax of the mathematical language in which the theory of

the transmission of force is expressed. Let x, y, z be the co

ordinates of any point within the body ; W the whole amount
of work done in the circumstances specified above

; and fff in

tegration extended throughout the space occupied by the body:
so that

W=fff(Pe+Qf+g + Sa+Tb + Uc) dxdydz (5).

If now we denote by a, /?, y the component displacements of any
point of the matter infinitely near the point (x, y, z), experienced
when the additional strain

(e, f, g, a, b, c) takes place, whether

non-rotationally ( 182) and with some point of the body fixed,

or with any motion of translation whatever and any infinitely

small rotation, by adapting 181 (5) to infinitely small strains

according to our present notation
( 669), and using in it strain-com-

190 (e),
we have ESKfdL

placement.

e = f=*!*
dx dy

d/3 dy dy da da -M (
6
)

a =
-&amp;gt;-

+ -r- &amp;gt;

& = -/- + c =
dz dy dx dz dy

With these, (5) becomes Work done
through
interior;

Hence by integration

f[(Pa+U^+Ty)dydz + (Ua + Q^ + Sy}dzdx + (Ta + Sp + Ry)dxdU] ......... (8),

the limits of the integrations being so taken that, if da- denote

an element of the bounding surface, JJ integration all over it, and

I, m, n the direction-cosines of the normal at any point of it, the

expression means the same as

142
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which, with the terms grouped otherwise, becomes

secon(^ member of this, in virtue of (1), expresses directly
on surface. foe work done by the forces applied from without to the bounding

surface.

Differentia^
671. If, now, we suppose the body to yield to a stress (P, Q,

ba
k
stress

&quot;^ ^ ^ ^ ^^ * PP se tnis stress only with its innate resist

ance to change of shape, the differential equation of work done

will [by (4) with de, df, etc., substituted for e, f, etc.] be

dw = Pde + Qdf+Bdg + Sda+Tdb+ Udc ......... (11),

if w denote the whole amount of work done per unit of volume

in any part of the body while the substance in this part ex

periences a strain (e, f, g, a, b, c) from some initial state re-

Fhysicaiap- garded as a state of no strain. This equation, as we shall see

later, under Properties of Matter, expresses the work done in

a natural fluid, by distorting stress (or difference of pressure in

different directions) working against its innate viscosity; and

w is then, according to Joule s discovery, the dynamic value of

the heat generated in the process. The equation may also be

applied to express the work done in straining an imperfectly

elastic solid, or an elastic solid of which the temperature varies

during the process. In all such applications the stress will

depend partly on the speed of the straining motion, or on the

varying temperature, and not at all, or not solely, on the state

of strain at any moment, and the system will not be dynamically

conservative.

Perfectly 672. Definition. A perfectly elastic body is a body which,

denned, in.

7
when brought to any one state of strain, requires at all times

dynamics, the same stress to hold it in this state; however long it be

kept strained, or however rapidly its state be altered from any

other strain, or from no strain, to the strain in question. Here,

according to our plan ( 443, 448) for Abstract Dynamics, we

ignore variation of temperature in the body. If, however, we

add a condition of absolutely no variation of temperature, or

of recurrence to one specified temperature after changes of

strain, we have a definition of that property of perfect elasticity
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towards which highly elastic bodies in nature approximate; and itscon-

which is rigorously fulfilled by all fluids, and may be so by fulfilment

t: IM l. j. l T&amp;gt; A t innature.
some real solids, as homogeneous crystals. But inasmuch as

the elastic reaction of every kind of body against strain varies

with varying temperature, and (a thermodynamic consequence
of this, as we shall see later) any increase or diminution of

strain in an elastic body is necessarily accompanied by a

change of temperature; even a perfectly elastic body could not,

in passing through different strains, act as a rigorously conser

vative system, but, on the contrary, must give rise to dissipation

of energy in consequence of the conduction or radiation of heat

induced by these changes of temperature.

But by making the changes of strain quickly enough to pre
vent any sensible equalization of temperature by conduction or

radiation (as, for instance, Stokes has shown, is done in sound

of musical notes travelling through air) ;
or by making them

slowly enough to allow the temperature to be maintained

sensibly constant* by proper appliances ; any highly elastic, or

perfectly elastic body in nature may be got to act very nearly
as a conservative system.

673. In nature, therefore, the integral amount, w, of work Potential

defined as above, is for a perfectly elastic body, independent

( 274) of the series of configurations, or states of strain, strained,

through which it may have been brought from the first to

the second of the specified conditions, provided it has not

been allowed to change sensibly in temperature during the

process.

The analytical statement is that the expression (11) for dw
must be the differential of a function of e, f, g, a, b, c, regarded

as independent variables ; or, which means the same, w is a

function of these elements, and

p_dw ~_ dw
f&amp;gt;_dw

1

--& ~W
_
~* I

(12).

dw dw
j-..

dw
da db dc J

*
&quot;On the Thermoelastic and Thermomagnetic Properties of Matter&quot;

(W.Thomson). Quarterly Journal of Mathematics. April, 1855 ; Mathematical

and Physical Papers, Art. XLVIII. Part vn.
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Potential

energy of
an elastic

solid held
strained.

Stress-com
ponents ex
pressed in

terms of
strain.

+ 2 (e,f)ef+ 2(e,g)eg+2(e, a)ea + 2
(e, b)eb + 2(e, c)ec

+ 2(f,g)fg + 2(/f )/+ 2 (fib)fb+ 2(/,c)/c

+ 2(g,a)ga + 2 (g, b)gb + 2(g,c)gc

In Appendix C, we shall return to the comprehensive analytical

treatment of this theory, not confining it to infinitely small strains

for which alone the notation
(e, f, ...), as defined in 669, is

convenient. In the meantime, we shall only say that when the

whole amount of strain is infinitely small, and the stress-com

ponents are therefore all altered in the same ratio as the strain-

components if these are altered all in any one ratio; w must be a

homogeneous quadratic function of the six variables e,f, g, a, b, c,

which, if we denote by (e, e), (f,f)...(e,f}... constants depend

ing on the quality of the substance and on the directions chosen

for the axes of co-ordinates, we may write as follows:

(13).

The 21 coefficients (e, e), (/,/)...(&, c),
in this expression con

stitute the 21 &quot;coefficients of
elasticity,&quot;

which Green first

showed to be proper and essential for a complete theory of the

dynamics of an elastic solid subjected to infinitely small strains.

The only condition that can be theoretically imposed upon these

coefficients is that they must not permit w to become negative for

any values, positive or negative, of the strain-components e, /,....

Under Properties of Matter, we shall see that an untenable theory

(Boscovich s), falsely worked out by mathematicians, has led to

relations among the coefficients of elasticity which experiment has

proved to be false.

Eliminating w from (12) by (13) we have

P =
(e, e) e + (,/)/+ (e, g)g + (e, a)a +

(e, b) 6 + (e, c) c
-j

etc. etc.

etc. etc.

(14).

These equations express the six components of stress (P, Q, R,

S, T, U) as linear functions of the six components of strain

(
e,f} ff)

a
&amp;gt;

b, c) with 15 equalities [namely (e, /) = (/, e), etc.]

among their 36 coefficients, which leave only 21 of them incle-
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pendent. The mere principle of superposition (which we have Stress-com-

used above in establishing the quadratic form for w) might pressed in

have been directly applied to demonstrate linear formulae for the strain.

stress-components. Thus it is that some authors have been led to

lay down, as the foundation of the most general possible theory

of elasticity, six equations involving 36 coefficients supposed

to be independent. But it is only by the principle of energy that,

as first discovered by Green, the fifteen pairs of these coefficients

are proved to be equal.

The algebraic transformation of equations (14) to express the Strain-

components

strain-components singly, by linear functions of the stress-corn- expressed

ponents, may be directly effected of course by forming the proper of stress.

determinants from the 36 coefficients, and taking the 36 proper

quotients. From a known determinantal theorem, used also

above
[

313 (d)], it follows that there are 15 equalities between

pairs of these 36 quotients, because of the 15 equalities in pairs

of the coefficients of e,f, etc., in (14). Thus, if we denote by

[f, f], [Q, ],
- [P, Ql ... [Q, P] -

the set of 36 determinantal quotients found by that process (being,

therefore, known algebraic functions of the original coefficients

(
e

)&amp;gt; (/&amp;gt;/)i etc.), we have

etc. etc. J

and these new coefficients satisfy 15 equations

[P, ]=[, PI [f, X]-[S, f] .................. (17).

By what we proved in 313 (d) when engaged with precisely

the same algebraic transformation, we see that [P, P], [Q, $], ...,

[P, Q],... are simply the coefficients of Pa

, Q
2

, ..., 2PQ, ... in the

expression for 2w obtained by eliminating e,/, ... from (13), so

that

{[P,P]P
2

+[Q,Q]Q
2 + ...+2[P,Q]PQ+2[P,K]PM+. ..}... (18);

and

dw~ , Vdw
V
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where the brackets [ 1 denote the partial differential coefficientsL
-J

taken on the supposition that w is expressed as a function of

P, Q, etc., as in (19); to distinguish them from those of equations

(12) which were taken on the supposition that w is expressed
as a function of e, f, etc., as in (13). We have also, as in

313
(rf),

b+Uc) ............... (20);
(5).

which might have been put down in the beginning, as it simply

expresses that

Average 674. The average stress, due to elasticity of the solid, when
through any strained from its natural condition to that of strain (e, f, q, a, b, c)
changing .

\ w 9*
strain. is (as from the assumed applicability of the principle of super

position we see it must be) just half the stress required to keep
it in this state of strain.

Homogene-

defined.

Molecular
hypothesis

assumes a
very fine

grained
texture in

crystals,

Xomo
a
eSe

ousness.

675. A body is called homogeneous wben any two equal,

similar parts of it, witb corresponding lines parallel and turned

towards the same parts, are undistinguishable from one another

by any difference in quality. The perfect fulfilment of this

condition without any limit as to the smallness of the parts,

though conceivable, is not generally regarded as probable for

any of the real solids -or fluids known to us, however seemingly

homogeneous. It is, we believe, held by all naturalists thatJ
.

there is a molecular structure, according to which, in compound
bodies such as water, ice, rock-crystal, etc., the constituent

substances lie side by side, or arranged in groups of finite

dimensions, and even in bodies called simple (i.e., not known

to be chemically resolvable into other substances) there is no

ultimate homogeneousness. In other words, tne prevailing

belief is that every kind of matter with which we are acquainted

has a more or less coarse-grained texture, whether having visible*
.

molecules, as great masses of solid stone- or brick-building, or&
natural granite or sandstone rocks; or, molecules too small to

^6 visible or directly measureable by us (but not infinitely small)
*

jn seemingly homogeneous metals, or continuous crystals, or

Probably not undiscoverably small, although of dimensions not yet known

to ns. See Appendix F. on &quot; Size of Atoms.&quot;
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liquids, or gases. We must of course return to this subject

under Properties of Matter
;
and in the meantime need only Scales of

say that the definition of homogeneousness may be applied homogene-

-i 1-
ousness.

practically on a very large scale to masses of building or coarse

grained conglomerate rock, or on a more moderate scale to

blocks of common sandstone, or on a very small scale to seem

ingly homogeneous metals*; or on a scale of extreme, undis

covered fineness, to vitreous bodies, continuous crystals, solidified

gums, as India rubber, gum-arabic, etc., and fluids.

676. The substance of a homogeneous solid is called iso- isotropic

tropic when a spherical portion of it, tested by any physical tropic

agency, exhibits no difference in quality however it is turned, defined.

Or, which amounts to the same, a cubical portion cut from any

position in an isotropic body exhibits the same qualities rela

tively to each pair of parallel faces. Or two equal and similar

portions cut from any positions in the body, not subject to the

condition of parallelism ( 675), are undistinguishable from one

another. A substance which is not isotropic, but exhibits dif

ferences of quality in different directions, is called eolotropic.

677. An individual body, or the substance of a homogeneous isotropy

solid, may be isotropic in one quality or class of qualities, but tropyof

&quot;

. , -i different

eolotropic m others. sets of

properties.

Thus in abstract dynamics a rigid body, or a group of bodies

rigidly connected, contained within and rigidly attached to a

rigid spherical surface, is kinetically symmetrical ( 285) if its

centre of inertia is at the centre of the sphere, and if its moments

of inertia are equal round all diameters. It is also isotropic

relatively to gravitation if it is centrobaric
( 534), so that the

centre of a figure is not merely a centre of inertia, but a true

centre of gravity. Or a transparent substance may transmit

light at different velocities in different directions through it

(that is, be doubly refracting), and yet a cube of it may (and

generally does in natural crystals) absorb the same part of a

beam of white light transmitted across it perpendicularly to

*
Which, however, we know, as recently proved by Deville and Van Troost,

are porous enough at high temperatures to allow very free percolation of gases.
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any of its three pairs of faces. Or (as a crystal which exhibits

dichroism) it may be eolotropic relatively to the latter, or to

either optic quality, and yet it may conduct heat equally in all

directions.

Practical 678. The remarks of 675 relative to homo^eneousness
limitation m aggregate, and the supposed ultimately heterogeneous

texture of all substances however seemingly homogeneous,
indicate corresponding limitations and non-rigorous practical

interpretations of isotropy.
molecules.

Conditions 679. To be elastically isotropic, we see first that a spherical
r cukica* Portion of any solid, if subjected to uniform normal

pressure (positive or negative) all round, must, in yielding,

experience no deformation : and therefore must be equally com

pressed (or dilated) in all directions. But, further, a cube cut

from any position in it, and acted on by tangential or shearing
stress ( 662) in planes parallel to two pairs of its sides, must

experience simple deformation, or shear
( 171), in the same

direction, unaccompanied by condensation or dilatation*, and

the same in amount for all the three ways in which a stress

may be thus applied to any one cube, and for different cubes

taken from any different positions in the solid.

Measures of 680. Hence the elastic quality of a perfectly elastic, homo-
r6*istanco

tocompres- geneous, isotropic solid is fully defined by two elements: its
sionandre- . ....
sistanceto resistance to compression, and its resistance to distortion. The
distortion. .

r
.

amount of uniform pressure in all directions, per unit area of

its surface, required to produce a stated very small compression,

measures the first of these, and the amount of the shearing

stress required to produce a stated amount of shear measures

* It must be remembered that the changes of figure and volume we are con

cerned with are so small that the principle of superposition is applicable; so

that if any shearing stress produced a condensation, an opposite shearing

stress would produce a dilatation, which is a violation of the isotropic condition.

But it is possible that a shearing stress may produce, in a truly isotropic solid,

condensation or dilatation in proportion to the square of its value : and it is

probable that such effects may be sensible in India rubber, or cork, or other

bodies susceptible of great deformations or compressions, with persistent elas

ticity.
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the second. The numerical measure of the first is the com

pressing pressure divided by the diminution of the bulk of

a portion of the substance which, when uncompressed, occupies

the unit volume. It is sometimes called the elasticity of Buik-

volume, or the resistance to compression, or the bulk-modulus Soduius of

of elasticity or the modulus of compression. Its reciprocal, or sion.
pre

the amount of compression on unit of volume divided by the

compressing pressure, or, as we may conveniently say, the com

pression per unit of volume, per unit of compressing pressure,

is commonly called the compressibility. The second, or resist- compres-

ance to change of shape, is measured by the tangential stress
S1

(reckoned as in 662) divided by the amount of the distortion Rigidity, or

or shear
( 175) which it produces, and is called the modulus ofjigure,
VJ* r

defined.

of rigidity, or for brevity rigidity of the substance, or its

elasticity offigure.

681. From 169 it follows that a strain compounded of a

simple extension in one set of parallels, and a simple contrac

tion of equal amount in any other set perpendicular to those,

is the same as a simple shear in either of the two sets of Discrepant

planes cutting the two sets of parallels at 45. And the

numerical measure ( 175) of this shear, or simple distortion,

is equal to double the amount of the elongation or contraction longitudinal

(each measured, of course, per unit of length). Similarly, we stresses re-

see
( 668) that a longitudinal traction (or negative pressure) involved.

parallel to one line, and an equal longitudinal positive pressure

parallel to any line at right angles to it, is equivalent to

a shearing stress of tangential tractions ( 661) parallel to

the planes which cut those lines at 45. And the numerical

measure of this shearing stress, being ( 662) the amount of

the tangential traction in either set of planes, is equal to the

amount of the positive or negative normal pressure, not

doubled.
,-..

T
.. - , .,,*. . - ,. - ..,. *.. *. . . . . . &amp;gt;

682. Since then any stress whatever may be made up of strain pro-

simple longitudinal stresses, it follows that, to find the relation a single

between any stress and the strain produced by it, we have only stress.

to find the strain produced by a single longitudinal stress,

which we may do at once thus : A simple longitudinal stress,



220 ABSTRACT DYNAMICS. [682.

Strain pro
duced by
u single
longitudinal
stress.

P, is equivalent to a uniform

dilating tension -JP in all di

rections, compounded with two

shearing stresses, each equal to

JP, and having a common axis

in the line of the given longi

tudinal stress, and their other

two axes any two lines at right

angles to one another and to it.

The diagram, drawn in a plane

through one of these latter lines,

and the former, sufficiently in

dicates the synthesis ;
the only

forces not shown being those perpendicular to its plane.

Hence if n denote the rigidity, and k the bulk-modulus

[being the same as the reciprocal of the compressibility

( 680)], the effect will be an equal dilatation in all directions,

amounting, per unit of volume, to

k .(1),

compounded with two equal shears, each amounting to

n (2),

and having ( 679) their axes in the directions just stated as

those of the shearing stresses.

683. The dilatation and two shears thus determined may
be conveniently reduced to simple longitudinal strains by still

following the indications of 681, thus:

The two shears together constitute an elongation amounting
to ^P/n in the direction of the given force, P, and equal contrac

tion amounting to %P/n in all directions perpendicular to it.

And the cubic dilatation JP/& implies a linear dilatation, equal

in all directions, amounting to Pjk. On the whole, therefore,

we have
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linear elongation = P(^- + KJ.)
&amp;gt;

in the direction of

the applied stress, and
...(3).

Hence
Young s

modulus
(686)

Qnk

linear contraction = P [^-- 777 )&amp;gt;

in all directions
\6n 9kJ

perpendicular to the applied stress.

684. Hence when the ends of a column, bar, or wire, of

isotropic material, are acted on by equal and opposite forces,
o _ 2?i

it experiences a lateral linear contraction, equal to ^-7f^-r of Ratioof
2 (3k + n) lateral con-

. traction to

the longitudinal dilatation, each reckoned as usual per unit longitudinal
extension

of linear measure. One specimen of the fallacious mathe

matics above referred to ( 673), is a celebrated conclusion of

Navier s and Poisson s that this ratio is ^, which requires

the rigidity to be f of the bulk-modulus, for all solids :

and which was first shown to be false by Stokes* from

many obvious observations, proving enormous discrepancies

from it in many well-known bodies, and rendering it most im

probable that there is any approach to a constancy of ratio

between rigidity and bulk-modulus in any class of solids.

Thus clear elastic jellies, and India rubber, present familiar

specimens of isotropic homogeneous solids, which, while differ

ing very much from one another in rigidity (&quot;stiffness&quot;),
are

probably all of very nearly the same compressibility as water.

This being ^gVoo per pound per square inch; the bulk-

modulus, measured by its reciprocal, or, as we may read it,

&quot; 308000 Ibs. per square inch,&quot; is obviously many hundred

times the absolute amount of the rigidity of the stiffest of those

substances. A column of any of them, therefore, when pressed

together or pulled out, within its limits of elasticity, by balanc- different for

ing forces applied to its ends (or an India-rubber band when substances

pulled out), experiences no sensible change of volume, though JeW

very sensible change of length. Hence the proportionate ex

tension or contraction of any transverse diameter must be

sensibly equal to J the longitudinal contraction or extension :

* On the Friction of Fluids in Motion, and the Equilibrium and Motion of

Elastic Solids. Trans. Camb. Phil. Jour., April, 1845. See also Camb. and Dub.

Math. Jour., March, 1848.
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different for and for all ordinary stresses, such substances may be practically
different . .

substances regarded as incompressible elastic solids. Stokes gave reasons
from i for to

. i i i_ .

jelly too for believing that metals also have in general greater resist-
for cork.

6
. . . .

ance to compression, in proportion to their rigidities, than

according to the fallacious theory, although for them the dis

crepancy is very much less than for the gelatinous bodies. This

probable conclusion was soon experimentally demonstrated by

Wertheim, who found the ratio of lateral to longitudinal change
of linear dimensions, in columns acted on solely by longitudinal

force, to be about J for glass and brass
;
and by Kirch hoff, who,

by a very well-devised experimental method, found 387 as the

value of that ratio for brass, and 294 for iron. For copper we

find that it probably lies between 226 and 441, by recent

experiments* of our own, measuring the torsional and longi

tudinal rigidities ( 596, 599, 686) of a copper wire.

Supposition 685. All these results indicate rigidity less in proportion to

p
f

erfecV
deal

the bulk-modulus than according to Navier s and Poisson s

Boundless, theory. And it has been supposed by many naturalists, who

have seen the necessity of abandoning that theory as inapplic

able to ordinary solids, that it may be regarded as the proper

theory for an ideal perfect solid, and as indicating an amount of

rigidity not quite reached in any real substance, but approached

to in some of the most rigid of natural solids (as, for instance,

iron). But it is scarcely possible to hold a piece of cork in the

hand without perceiving the fallaciousness of this last attempt

to maintain a theory which never had any good foundation.

By careful measurements on columns of cork of various forms

(among them, cylindrical pieces cut in the ordinary way for

bottles) before and after compressing them longitudinally in a

Bramah s press, we have found that the change of lateral

dimensions is insensible both with small longitudinal contrac

tions and return dilatations, within the limits of elasticity, and

with such enormous longitudinal contractions as to
-J

or J of

the original length. It is thus proved decisively that cork is

much more rigid, while metals, glass, and gelatinous bodies are

* On the Elasticity and Viscosity of Metals (W. Thomson). Proc. P. S.,

May, 1865. See Art. Elasticity, Encyc. Britan.
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all less rigid, in proportion to bulk-modulus than the supposed
&quot;

perfect solid
;

&quot; and the utter worthlessness of the theory is

experimentally demonstrated.

686. The modulus of elasticity of a bar, wire, fibre, thin YOUTH S

filament, band, or cord of any material (of which the substance fined!

us

need not be isotropic, nor even homogeneous within one normal

section), as a bar of glass or wood, a metal wire, a natural fibre,

an India-rubber band, or a common thread, cord, or tape, is

a term introduced by Dr Thomas Young* to designate what

we also sometimes call its longitudinal rigidity : that is, the Same as

quotient obtained by dividing the simple longitudinal force rigidity.

1

required to produce any infinitesimal elongation or contraction

by the amount of this elongation or contraction reckoned as

usual per unit of length.

* Extract from Encycl. Brit. Art. Elasticity, 42. &quot;Fount s Modulus,&quot; or

Modulus of Simple Longitudinal Stress. Thomas Young called the modulus of

elasticity of an elastic solid the amount of the end-pull or end-thrust required to

produce any infinitesimal elongation or contraction of a wire, or har, or column

of the substance multiplied by the ratio of its length to the elongation or con

traction. In this definition the definite article is clearly misapplied. There are,

as we have seen, two moduluses of elasticity for an isotropic solid, one measuring

elasticity of bulk, the other measuring elasticity of shape. An interesting and

instructive illustration of the confusion of ideas so often rising in physical science

from faulty logic is to be found in &quot;An Account of an Experiment on the Elas

ticity of Ice: By Benjamin Bevan, Esq., in a letter to Dr Thomas Young, Foreign

Sec. E. S.&quot; and in Young s &quot;Note&quot; upon it, both published in the Transactions

of the Royal Society for 1826. Bevan gives an interesting account of a well-

designed and well-executed experiment on the flexure of a bar, 3 97 inches thick,

10 inches broad, and 100 inches long, of ice on a pond near Leighton Buzzard

(the bar remaining attached by one end to the rest of the ice, but being cut free

by a saw along its sides and across its other end), by which he obtained a fairly

accurate determination of &quot;the modulus of ice&quot; (his result was 21,000,000 feet);

and says that he repeated the experiment in various ways on ice bars of various

dimensions, some remaining attached by one end, others completely detached,

and found results agreeing with the first as nearly &quot;as the admeasurement of

the thickness could be ascertained.
&quot; He then proceeds to compare &quot;the modulus

of ice&quot; which he had thus found with &quot;the modulus of water,&quot; which he quotes

from Young s Lectures as deduced from Canton s experiments on the compressi

bility of water. Young in his &quot;Note&quot; does not point out that the two moduluses

were essentially different, and that the modulus of his definition, the modulus dc-

terminable from the flexure of a bar, is essentially zero for every fluid. We now
call &quot;Young s modulus&quot; the particular modulus of elasticity denned as above by

Young, and so avoid all confusion.
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Weight- 687. Instead of reckoning Young s modulus in units of
modulus . . . .

and length weight, it is sometimes convenient to express it in terms of the
3

weight of the unit length of the rod, wire, or thread. The
modulus thus reckoned, or, as it is called by some writers, the

length of the modulus, is of course found by dividing the weight-

SfnSmL
01 m dulus by the weight of the unit length. It is useful in many

sim
1&amp;lt;

ie

a
applications of the theory of elasticity; as, for instance, in this

str^ss
Udinal resu^, which will be proved later : the velocity of transmission

rod
ugh a f l ngitudinal vibrations (as of sound) along a bar or cord, is

equal to the velocity acquired by a body in falling from a

height equal to half the length of the modulus*. For other

examples see 791, a, below.

Specific 688. The specific Young s modulus of elasticity of an isotropic

modulus of substance, or, as it is most often called, simply the Young s modu-

body. lus of the substance, is the Young s modulus of a bar of it having

some definitely specified sectional area. If this be such that the

weight of unit length is unity, the Young s modulus of the sub

stance will be the same as the length of the modulus of any bar

of it : a system of reckoning which, as we have seen, has some

advantages in application. It is, however, more usual to choose

a common unit of area as the sectional area of the bar referred

to in the definition. There must also be a definite under-

in terms of standing as to the unit in terms of which the force is measured,

unit! orof
c
which may be either the absolute unit ( 223) : or the gravi-

gravityfon tation unit for a specified locality ;
that is ( 226), the weight

mass ki any in that locality of the unit of mass. Experimenters hitherto

locality. have stated their results in terms of the gravitation unit, each

for his own locality; the accuracy hitherto attained being

scarcely in any cases sufficient to require corrections for the

* It is to be understood that the vibrations in question are so much spread

out through the length of the body, that inertia does not sensibly influence the

transverse contractions and dilatations which (unless the substance have in this

respect the peculiar character presented by cork, 684) take place along with

them. Also, under thermodynamics, we shall see that changes of shape and

bulk produced by the varying stresses cause changes of temperature which, in

ordinary solids, render the velocity of transmission of longitudinal vibrations

sensibly greater than that calculated by the rule stated in the text, if we use the

static modulus as understood from the definition there given ;
and we shall

learn to take into account the thermal effect by using a definite static modulus,

or kinetic modulus, according to the circumstances of any case that may occur.
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different forces of gravity in the different places of observation, in terms of

Corresponding statements apply to the modulus of rigidity, unit; or of

Young s word &quot;Modulus&quot; is also used conveniently enough gravity on

in the expression
&quot; Modulus of Rupture,&quot; which is almost a mass in any

T)u.rti( ulu :

synonym for
&quot;Tenacity.&quot; (See table of Moduluses and Strengths, locality,

article
&quot;

Elasticity,&quot; Encyclopedia Briiannica, new edition.) It

means the greatest pull that can be applied to a wire, or

bar, or rod of the substance without breaking it. It may be

reckoned either in units of force per unit of area, of the cross

section; or it may be reckoned in terms of the length which

the bar must have to be equal in weight to the breaking force,

and when so reckoned it is called the &quot;

Length-Modulus of

Rupture.&quot;

689. The most useful and generally convenient specifica

tion of the modulus of elasticity of a substance is in grammes-

weight per square centimetre. This has only to be divided by
the specific gravity of the substance to give the length of the

modulus. British measures, however, being still unhappily
sometimes used in practical and even in high scientific state

ments, we may have occasion to refer to reckonings of the

modulus in pounds per square inch or per square foot, or to

length of the modulus in feet.

690. The reckoning most commonly adopted in British

treatises on mechanics and practical statements is pounds per

square inch. The modulus thus stated must be divided by
the weight of 12 cubic inches of the solid, or by the product
of its specific gravity into 4337*, to find the length of the

modulus, in feet.

* This decimal being the weight in Ibs. of 12 cubic inches of water. The one

great advantage of the French metrical system is, that the mass of the unit

volume (1 cubic centimetre) of water at its temperature of maximum density

(3-945) is unity (1 gramme) to a sufficient degree of approximation for almost

all practical purposes. Thus, according to this system, the density of a body
and its specific gravity mean one and the same thing ; whereas on the BritisL

no-system the density is expressed by a number found by multiplying the specific

gravity by one number or another, according to the choice of a cubic inch, cubic

foot, cubic yard, or cubic mile that is made for the unit of volume; and the grain,

scruple, gunmaker s drachm, apothecary s drachm, ounce Troy, ounce avoirdu

pois, pound Troy, pound avoirdupois, stone (Imperial, Ayrshire, Lanarkshire,

VOL. II. 15
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To reduce from pounds per square inch to grammes per

square centimetre, multiply by 70 31, or divide by &quot;014223.

French engineers generally state their results in kilogrammes

per square metre, and so bring them to more convenient

numbers, being T^V?nj of &quot;the inconveniently large numbers ex

pressing moduluses in grammes weight per square centimetre.

Metrical 691. The same statements as to units, reducing factors, and
dcnomina- . .

tionsof nominal designations, are applicable to the bulk-modulus of
rnodulusps

o^ elasticity any elastic solid or fluid, and to the rigidity ( 680) of an

isotropic body ; or, in general, to any one of the 21 modu

luses in the expressions [ 673. (14)] for stresses in terms of

strains, or to the reciprocal of any one of the 21 moduluses in

the expressions [ 673. (16)] for strains in terms of stresses, as

well as to the modulus defined by Young.

Practical 691 a. The convenience, for residents on the Earth, of

velocities of the length-reckoning of moduluses is illustrated by the theo

rems stated at the end of 687, and others analogous to it as

follows :

Distortionai (1) The velocity of propagation of a wave of distortion in an
without

V
,.VT , , . . , ,

change of isotropic homogeneous solid is equal to the velocity acquired by

a body in falling through a height equal to half the length-

modulus of rigidity.

Compres- (2) The velocity of the other kind of wave possible in an
sional, in an .

,
. , -,. j ,-, ,

.
T

elastic isotropic homogeneous solid, that is to say a wave analogous to

that of sound, is equal to the velocity acquired by a body falling

through a height equal to half the length-modulus for simple

longitudinal strain (compare 686) ; just as the Young s modu-

Dumbartonshire), stone for hay, stone for corn, quarter (of a hundredweight),

quarter (of corn), hundredweight, or ton, that is chosen for unit of mass. It is a

remarkable phenomenon, belonging rather to moral and social than to physical

science, that a people tending naturally to be regulated by common sense should

voluntarily condemn themselves, as the British have so long done, to unnecessary

hard labour in every action of common business or scientific work related to

measurement; from which all the other nations of Europe have emancipated

themselves. We have been informed, through the kindness of the late Pro

fessor W- H. Miller, of Cambridge, that he concludes, from a very trustworthy

.comparison of standards by Kupffer, of St Petersburgh, that the weight of a cubic

decimetre of water at temperature of maximum density is 1000-013 grammes.
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lus is reckoned for simple stress. The modulus for simple
longitudinal strain may be found by enclosing a rod or bar of

the substance in an infinitely rigid, perfectly smooth and fric-

tionless tube fitting it perfectly all round, and then dealing with
it as the rod with its sides all free is dealt with for finding the

Young s modulus. Of course it is understood that the ideal

tube, which gives positive normal pressure when the two ends
of the elastic rod within it are pressed together, must be sup
posed to give the negative normal pressure, or the normal

traction, required to prevent lateral shrinkage, when the
two ends of the wire are pulled asunder. (Compare 684

above.)

(3) The velocity of sound in a liquid is the velocity a body Compres-

would acquire in falling through a height equal to half the liJSid?

11

length-modulus of compression.

(4) The Newtonian velocity of sound (that is to say, the compres-

velocity which sound would have in air if the pressure in the gas?
1 m

course of the vibration varied simply according to Boyle s law
without correction for the heat of condensation, and the cold of

rarefaction) is equal to the velocity a body would acquire in

falling through half the height of the homogeneous atmosphere
for the actual temperature of the air whatever it may be.

(&quot;
The

Height of the Homogeneous Atmosphere
&quot;

is a short expression

commonly used to designate the depth that an ideal incompres
sible liquid of the same density as air must have to give by its

weight the same pressure at the bottom as the actual pressure
of the air at the supposed temperature and density.)

(5) The velocity of a long wave* in water of uniform depth, gravita-

supposed incompressible, is the velocity a body would acquire in liquid;

felling through a height equal to half the depth.

(6) The velocity of propagation of a transverse pulse in a transversal

stretched cord is equal to the velocity acquired by a body ItShed
f

falling through a height equal to half the length of a quantity
c rd

of cord amounting in weight to the stretching force.

* A &quot;Long wave
&quot;

is a technical expression in the theory of waves in water used
to denote a wave of which the length is a large multiple (20 or 30 or more) of

the depth.

152
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?n5iesli?.
n ^^ k &quot; Res ilience

&quot;

is a very useful word, introduced about

f rty years ago (when the doctrine of energy was beginning to

become practically appreciated) by Lewis Gordon, first professor
Of engineering in the university of Glasgow, to denote the quan

tity of work that a spring (or elastic body) gives back when
strained to some stated limit and then allowed to return to the

condition in which it rests when free from stress. The word
&quot;

resilience
&quot;

used without special qualifications may be under

stood as meaning extreme resilience, or the work given back by
the spring after being strained to the extreme limit within

which it can be strained again and again without breaking or

taking a permanent set. In all cases for which Hooke s law

of simple proportionality between stress and strain holds, the

resilience is obviously equal to the work done by a constant

force of half the amount of the extreme force acting through
a space equal to the extreme deflection.

691 c. When force is reckoned in
&quot;

gravitation measure,&quot;

resilience per unit of the spring s mass is simply the height

that the spring itself, or an equal weight, could be lifted against

gravity by an amount of work equal to that given back by the

spring returning from the stressed condition.

691 d. Let the elastic body be a long homogeneous cylinder

or prism with flat ends (a bar as we may call it for brevity),

and let the stress for which its resilience is reckoned be positive

normal pressures on its ends. The resilience per unit mass is

equal to the greatest height from which the bar can fall with

its length vertical, and impinge against a perfectly hard friction-

less horizontal plane without suffering stress beyond its limits

of elasticity. For in this case (as in the case of the direct im

pact of two equal and similar bars meeting with equal and oppo
site velocities, discussed above, 303, 304), the kinetic energy

of the translational motion preceding the impact is, during the

first half of the collision, wholly converted into potential energy
of elastic force, which during the second half of the collision is

wholly reconverted into kinetic energy of translational motion

in the reverse direction. During the whole time of the collision

the stopped end of the bar experiences a constant pressure, and

at the middle of the collision the whole substance of the bar
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is for an instant at rest in the same state of compression as it Digression

would have permanently if in equilibrium under the influence enoe, from

of that pressure and an equal and opposite pressure on the

other end. From the beginning to the middle of the collision

the compression advances at a uniform rate through the bar

from the stopped end to the free end. Every particle of the

bar which the compression has not reached continues moving

uniformly with the velocity of the whole before the collision

until the compression reaches it, when it instantaneously comes

to rest. The part of the bar which at any instant is all that is

compressed remains at rest till the corresponding instant in the

second half of the collision.

691 e. From our preceding view of a bar impinging against

an ideal perfectly rigid plane, we see at once all that takes

place in the real case of any rigorously direct longitudinal

collision between two equal and similar elastic bars with flat

ends. In this case the whole of the kinetic energy which the

bodies had before collision reappears as purely translational

kinetic energy after collision. The same would be approxi

mately true of any two bars, provided the times taken by a

pulse of simple longitudinal stress to run through their lengths
are equal. Thus if the two bars be of the same substance, or

of different substances having the same value for Young s

modulus, the lengths must be equal, but the diameters may be

unequal. Or if the Young s modulus be different in the two

bars, their lengths must be inversely as the square root of its

values. To all such cases the laws of &quot;collision between two

perfectly elastic bodies/ whether of equal or unequal masses, as

given in elementary dynamical treatises, are applicable*. But

in every other case part of the translational energy which the

bodies have before collision is left in the shape of vibrations

after collision, and the translational energy after collision is

accordingly less than before collision. The losses of energy
observed in common elementary dynamical experiments on

collision between solid globes of the same substance are partly

due to this cause. If they were wholly due to it they would

*
[It will be remembered that in 303 such cases were characterized as

&quot;imaginable although not realizable.&quot; Even in the most favourable case (that
of equal diameters) it is impossible to secure that the contact shall take place

uniformly over the ends. H. L.]
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Digression be independent of the substance, when two globes of the same

enoe,^from
substance are used. They would bear the same proportion to

ticity

a
the whole energy in every case of collision between two equal

5K?* globes, or again, in every case of collision between two globes

of any stated proportion of diameters, provided in each case

the two which collide are of the same substance
;
but the

proportion of translational energy converted into vibrations

would not be the same for two equal globes as for two unequal

globes. Hence when differences of proportionate losses of energy
are found in experiments on different substances, as in Newton s

on globes of glass, iron, or compressed wool, this must be due

to imperfect elasticity of the material. It is to be expected
that careful experiments upon hard well-polished globes striking

one another with such gentle forces as not to produce even at

the point of contact any stress approaching to the limit of elas

ticity, will be found to give results in which the observed loss

of translational energy can be almost wholly accounted for by
vibrations remaining in the globes after collision.

691 /. Examples of Resilience. Example 1. In respect to

simple longitudinal pull, the extreme resilience of steel piano

forte wire of No. 22 Birmingham wire gauge, of density 7727,

weighing 34 grammes per centimetre (calculated by multi

plying the breaking weight of 106 kilogrammes into half the

elongation produced by it, namely -fa)
is 6163 metre-grammes

(gravitation measure) per ten metres of the wire. Or, what

ever the length of the wire, its resilience is equal to the

work required to lift its weight through 172 metres.

Example 2. The torsional resilience of the same wire, twisted

in either direction as far as it can be without giving it any
notable permanent set, was found to be equal to the work

required to lift its weight through 1*3 metres.

Example 3. The extreme resilience of a vulcanized india-

rubber band weighing 12 3 grammes was found to be equal to

the work required to lift its weight through 1200 metres. This

was found by stretching it by gradations of weights up to the

breaking weight, representing the results by aid of a curve, and

measuring its area to find the integral work given back by the

spring after being stretched by a weight just short of the break

ing weight.
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692. In 681, 682 we examined the effect of a simple stress re-

longitudinal stress, in producing elongation in its own direc- maintain

tion, and contraction in lines perpendicular to it. With stresses longitudinal

f strain.

substituted for strains, and strains for stresses, we may apply
the same process to investigate the longitudinal and lateral

tractions required to produce a simple longitudinal strain (that

is, an elongation in one direction, with no change of dimensions

perpendicular to it) in a rod or solid of any shape.

Thus a simple longitudinal strain e is equivalent to a cubic

dilatation e without change of figure (or linear dilatation \e

equal in all directions), and two shears consisting each of dila

tation ^e in the given direction, and contraction ^e in each of

two directions perpendicular to it and to one another. To

produce the cubic dilatation, e, alone requires ( 680) a normal

traction ke equal in all directions. And, to produce either of

the shears simply, since the measure
( 175) of each is fe,

requires a shearing stress equal to n x J0, which consists of

tangential tractions each equal to this amount, positive (or

drawing outwards) in the line of the given elongation, and

negative (or pressing inwards) in the perpendicular direction.

Thus we have in all

normal traction = (k + $ri)e, in the direction of the i

given strain, and /^x

normal traction = (k $ri)e,
in every direction per

pendicular to the given strain. J

693. If now we suppose any possible infinitely small strain stress-

(e, f, g, a, b, c), according to the specification of 669, to be ?nTermsof
9

given to a body, the stress (P, Q, E, 8, T, U) required to fsotropio*

maintain it will be expressed by the following formula?, ob-
y

tained by successive applications of 692 (4) to the com

ponents e, /, g separately, and of 680 to a, b, c :

S=na, T=nb
t
U=nc}

4
where S&+s
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694. Similarly, by 680 and 682 (3), we have

n

Mg={R-&amp;lt;r(P+Q)},

, ,, 9nk
where M = -

,

3k -I- n

3k-2n ,M ,
cr== &quot;

(6),

as the formulae expressing the strain (e, f, g, a, b, c) in terms of

the stress (P, Q, E, S, T, U). They are of course merely the

algebraic inversions of (5) ;
and ( 673) they might have been

found by solving these for e,f, g, a, b, c, regarded as the un

known quantities. M is here introduced to denote Young s

modulus
( 683).

Equation of 695. To express the equation of energy for an isotropic

the same, substance, we may take the general formula, [ 673 (20)],

w = (Pe + &amp;lt;?/+ Rg + Sa + Tb + Uc)

and eliminate from it P, Q, etc., by (5) of 693, or, again, e,f,

etc., by (6) of 694, we thus find

^
Funda- 696. The mathematical theory of the equilibrium of an

problems elastic solid presents the following general problems :

ofmathe- ,

theory?
-^ solid of any given shape, when undisturbed, is acted on in

its substance by force distributed through it in any given manner,

and displacements are arbitrarily produced, or forces arbitrarily

applied, over its bounding surface. It is required to find the

displacement of every point of its substance.

This problem has been thoroughly solved for a shell of

homogeneous isotropic substance bounded by surfaces which,

when undisturbed, are spherical and concentric ( 735) ;
bnt

not hitherto for a body of any other shape. The limitations
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under which solutions have been obtained for other cases (thin

plates, and rods), leading, as we have seen, to important

practical . results, have been stated above
( 588, 632). To

demonstrate the laws ( 591, 633) which were taken in an

ticipation will also be one of our applications of the general

equations for interior equilibrium of an elastic solid, which we

now proceed to investigate.

697. Any portion in the interior of an elastic solid may be Conditions

regarded as becoming perfectly rigid ( 564) without disturb- equilibrium.

ing the equilibrium either of itself or of the matter round it.

Hence the traction exerted by the matter all round it, regarded

as a distribution of force applied to its surface, must, with the

applied forces acting on the substance of the portion considered,

fulfil the conditions of equilibrium of forces acting on a rigid

body. This statement, applied to an infinitely small rectangular

parallelepiped of the body, gives the general differential equa
tions of internal equilibrium of an elastic solid. It is to be

remarked that three equations suffice
;
the conditions of equili- expressed

brium for the couples being secured by the relation established equations.

above ( 661) among the six pairs of tangential component
tractions on the six faces of the figure.

Let
(a?, y, z) be any point within the solid, and S.T, %, Sz edges

respectively parallel to the rectangular axes of reference, of an

infinitely small parallelepiped of the solid having that point for

its centre.

If P, Q, R, S, T, U denote
( 662) the stress at (x, y, z), the

average amounts of the component tractions (see table, 669) on

the faces of the parallelepiped will be

.JSaASyfe, parallel to OX,

on the two faces
dx

t J&B) Syfe, 07,
J

Taking the symmetrical expressions for the tractions on the two

other pairs of faces, and summing for all the faces all the com

ponents parallel to the three axes separately, we have
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dP dU

General

equilibrium.

5eS?they&quot;

/dlj

\dx

fdU
\dx

dT
dz Sa-SyS^, parallel to OX,

8x&y$z, ,,07,^dQ +
dS

dy dz

(dT dS_
dR

\dx dy dz

Let now X, Y, Z denote the components of the applied force

on the substance at (x, y, z), reckoned per unit of volume; so that

X&x&y$Z) Y&x$y$z, ZSxByBz will be their amounts on the small

portion in question. Adding these to . the corresponding com

ponents just found for the tractions, equating to zero, and omitting

the factor SxSySz, we have

dP
dU_

dT
dx dy dz

ax

dT
-7-ax

ay

dS
-y-
ay

dz

dR
dz

(2);

the six &amp;lt; qua- it.
tions of

equilibrium

bod -
rigid

which are the general equations of internal stress required for

equilibrium.

If for P, Q, R, S, T, U we substitute the linear functions of

e
, f&amp;gt; ff&amp;gt;

a
, t&amp;gt;,

c in terms of which they are expressed by (14) of

673, we have the equations of internal strain. And if we

eliminate e, f, g, a, b, c by (6) of 670 we have, for
(a, /?, y)the

components of the displacement of any interior point in terms of

(x, ?/, )
its undisplaced position in the solid, three linear partial

differential equations of the second degree, which are the equa
tions of internal equilibrium in their ultimate form. It is to be

remarked that, by supposing the coefficients (e, e), (e, f), etc.,

to be not constant, but given functions of (x, y, z),
we avoid

limiting the investigation to a homogenous body.

698. These equations being sufficient as well as necessary

for the equilibrium of the body, they must secure that the con-

dition of S 697 is fulfilled for any and every finite portion of
. .

* J J

Ihis is easily venned.

^et /// ^enote integration throughout any particular part of
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the solid, dcr an element of the surface bounding this part, and

[JJ] integration over the whole of this surface. We have

Hence, integrating each term once, attending to the limits as in

Appendix A., and denoting by I, m, n the direction-cosines of

the normal through c?cr,

fffXdxdydz = -
[ff(Pdydz+ Udzdx + Tdxdy}}= -

[ff(Pl + Um + Tn)d&amp;lt;r],

and therefore
[

662 (1)]

fffXdxdydz + [ffFdo-]
= Q .................. (3).

Again we have

dT ds dR\ fdU dQ dS\] ,

Now, integrating by parts, etc., as in Appendix A., we have

ill--

7Tf

y -=- dxdydz = [ffySmdv]
-
JffSdxdydz,

and Verification
, ^ of equations

ill
z~ dxdydz = [ffzSnda]

-
fffSdxdydz. T for

*
*

any part
supposed

Hence

Hl(yJ-
^) ****** = Uf(ys -

Using this in the preceding expression, integrating the other

terms each once simply as before, and using 662 (1), we find

......... (4).

The six equations of equilibrium being (3), (4), and the sym
metrical equations relative to y and z, are thus proved.

For an isotropic solid, the equations (2) become of course much Simplified

simpler. Thus, using (5) of 693, eliminating e, /, g, a, b, c foMsotropic

by (6) of 670, grouping conveniently the terms which result,
S lld

and putting

m=(k + ^n) ........................... (5),
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we find

d /da dfi dy\ /d
2a d2a d*a&amp;gt;

wyi^ + +^ j
+ H:^^ :o ^TTTa ;* ^ ~

h (
6
)

d /da -Q I

J

OF, as we may write them shortly,

ax

if we put

-=- -

dx dy dz

da dS dy . /QX
(8),

and

d3 d2 d2

-7-2 + T- +
-7-2

rfa;
2

(Z dz
2

so that 8 shall denote the amount of dilatation in volume ex

perienced by the substance; and v
2
tne same symbol of operation

as formerly [Appendix A. and B., and 491, 492, 499, etc.].

st Tenant s 699. One of the most beautiful applications of the general

JJtSon
11

equations of internal equilibrium of an elastic solid hitherto

problems. ^^ ^^ ^ ^ dQ ^ yenant to the torsion of prisms.*&quot;

To one end of a long straight prismatic rod, wire, or solid or

hollow cylinder of any form, a given couple is applied in a plane

Torsion pn&amp;gt; perpendicular to the length, while the other end is held fast : it

d

is required to find the degree of twist ( 120) produced, and

the distribution of strain and stress throughout the prism. The

conditions to be satisfied here are that the resultant action be

tween the substance on the two sides of any normal section is

a couple in the normal plane, equal to the given couple. Our

work for solving the problem will be much simplified by first

establishing the following preliminary propositions:

* Memoire* Acs Savants Strangers. 1S55. &quot;Pe la Torsion des Prismes, aveo

des considerations sur leur Flexion,&quot; etc.
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700. Let a solid (whether aeolotropic or isotropic) be so Lemma.

acted on by force applied from without to its boundary, that

throughout its interior there is no normal traction on any

plane parallel or perpendicular to a given plane, XOY, which

implies, of course, that there is no shearing stress with axes

in or parallel to this plane, and that the whole stress at any

point of the solid is a simple shearing stress of tangential
forces in some direction in the plane parallel to XOY} and in

the plane perpendicular to this direction. Then

(1.) The interior shearing stress must be equal, and simi

larly directed, in all parts of the solid lying in any line perpen
dicular to the plane XO Y.

(2.) It being premised that the traction at every point of

any surface perpendicular to the plane XOY is, by hypothesis,

a distribution of force in lines perpendicular to this plane; the

integral amount of it on any closed prismatic or cylindrical

surface perpendicular to XOY, and bounded by planes parallel

to it, is zero.

(3.) The matter within the prismatic surface and terminal

planes of (2.) being supposed for a moment
( 564) to be

rigid, the distribution of tractions referred to in (2.) con

stitutes a couple whose

moment, divided by the

distance between those

terminal planes, is equal

to the resultant force of

the tractions on the area

of either, and whose plane

is parallel to the lines

of these resultant forces.
i

In other words, ^the mo- O X
ment of the distribution of forces over the prismatic surface

referred to in (2.) round any line (OF or OX) in the plane XOY,
is equal to the sum of the components (T or $), perpendicular

to the same line, of the traction in either of the terminal planes

multiplied by the distance between these planes.
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Lemma. To prove (1.) consider for a moment as rigid ( 564) an

infinitesimal prism, AB (of sectional area
&amp;lt;w), perpendicular to

XOY, and having plane ends, A, B, parallel

to it. There being no forces on its sides (or

cylindrical boundary) perpendicular to its

length, its equilibrium so far as motion in

the direction of any line (OX), perpendi

cular to its length, requires ( 551, I.)
that

the components of the tractions on its ends

be equal and in opposite directions. Hence,

in the notation of G62, the shearing
B stress components, T, must be equal at A

and B; and so must the stress components S, for the same

reason.

To prove (2.) and (3.) we have only to remark that they are

required, according to 551, I. and IL, for the equilibrium of

the rigid prism referred to in (3.).

Or, analytically, by the general equations (2) of 697, since

JT = 0, F=0, Z=Q, P = 0, $ = 0, ^ = U=Q, by hypothesis;

we Lave

and

ax ay

Of these (1.) prove that S and T are functions of x and y without

z, or, in words, (1.) And if // denote integration over the whole

of any closed area of XO Y, we have

of which the second member, when the limits of the effected and

indicated integrations are properly assigned, is found to be the

same as

where / denotes integration over the whole bounding curve, ds

* The brackets [ ], as here used, denote integrals assigned properly for the

bounding curve.
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an element of its length, and &amp;lt; the inclination of ds to XO. Lemma.

But, by (1) 662, with I = sin
&amp;lt;,
m = cos

&amp;lt;,

n = 0, we have

H=T8m^ +
Scos&amp;lt;f&amp;gt; (3),

if // denote the traction (parallel to OZ), reckoned as usual per

unit of area, experienced by the bounding prismatic surface.

Hence
dS

and therefore, because of (2),

JHds =
(5),

which is (2.)
in symbols. A.gain we have, by integration by parts,

and substitution, (2), of -=- for
j-

,

JJTdxdy = [fTxdy]*
-
x^ dxdy

= \JTxdy]* +
(fx

~ dxdy = \jTxdy]* + [JSxdx]*

which proves (3.)

701. For a solid or hollow circular cylinder, the solution of

699 (given first, we believe, by Coulomb) obviously is that

each circular normal section remains unchanged in its own

dimensions, figure, and internal arrangement (so that every

straight line of its particles remains a straight line of un

changed length), but is turned round the axis of the cylinder

through such an angle as to give a uniform rate of twist ( 120)

equal to the applied couple divided by the product of the

moment of inertia of the circular area (whether annular or

complete to the centre) into the rigidity of the substance.

For, if we suppose the distribution of strain thus specified to Torsipnai

be actually produced, by whatever application of stress is neces- circular

sary, we have, in every part of the substance, a simple shear
c&amp;gt;

parallel to the normal section, and perpendicular to the radius

through it. The elastic reaction against this requires to balance

* The brackets [ ], as here used, denote integrals assigned properly for the

bounding curve.
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it
( 679, 682), a simple distorting stress consisting of forces in

the normal section, directed as the shear, and others in planes

through the axis, and directed parallel to the axis. The amount

of the shear is, for parts of the substance at distance r from the

axis, equal obviously to rr, if r be the rate of twist. Hence the

amount of the tangential force in either set cf planes is nrr per
unit of area, if n be the rigidity of the substance. Hence there

is no force between parts of the substance lying on the two sides

of any element of any circular cylinder coaxal with the bounding

cylinder or cylinders; and consequently no force is required on

the cylindrical boundary to maintain the supposed state of strain.

And the mutual action between the parts of the substance on the

tsvo sides of any normal plane section consists of force in this

plane, directed perpendicular to the radius through each point,

and amounting to nrr per unit of area. The moment of this dis

tribution of force round the axis of the cylinder is (if dcr denote

an element of the area) nrffdo-r
2

,
or the product of nr into the

moment of inertia of the area round the perpendicular to its plane

through its centre, which is therefore equal to the moment of the

couple applied at either end.

Prism of 702. Similarly, we see that if a cylinder or prism of any
constrained shape be compelled to take exactly the state of strain above
to a simple
tw^t, specified ( 701) with the line through the centres of inertia of

the normal sections, taken instead of the axis of the cylinder,

the mutual action between the parts of it on the two sides of

any normal section will be a couple of which the moment will

be expressed by the same formula, that is, the product of the

rigidity, into the rate of twist, into the moment of inertia of

the section round its centre of inertia.

requires The only additional remark required to prove, this is, that if
tract ions on _ . . .

its sides. the forces in the normal section be resolved in any two rect

angular directions, OX, OY, the sums of the components, being

respectively nrffxda- and mjjydcr, each vanish by the property

( 230) of the centre of inertia.

Traction on 703. But for any other shape of prism than a solid or

prismcon- symmetrical hollow circular cylinder, the supposed state of

a simple strain will require, besides the terminal opposed couples, force

parallel to the length of the prism, distributed over the pris-
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matic boundary, in proportion to the distance along the tangent, Traction on

from each point of the surface, to the point in which this line prism con-
strained to

is cut by a perpendicular to it from the centre of inertia of the a simple

normal section. To prove this let a normal section of the

prism be represented in the annexed diagram. Let PK, re

presenting the shear at any point, P, close to the prismatic

boundary, be resolved into PN and PT respectively along the

normal and tangent.

The whole shear, PK,
being equal to rr, its

component, PN, is

,T equal to rr sinew or

r . PE. The corre

sponding component
of the required stress

is m.PE, and involves

(661) equal forces in

the plane of the dia

gram, and in the plane through TP perpendicular to it, each

amounting to nr . PE per unit of area.

An application of force equal and opposite to the distribu

tion thus found over the prismatic boundary, would of course

alone produce in the prism, otherwise free, a state of strain

which, compounded with that supposed above, would give the

state of strain actually produced by the sole application of

balancing couples to the two ends. The result, it is easily st Venant s

seen (and it will be proved below), consists of an increased S ghS the

twist, together with a warping of naturally plane normal aScS by&quot;

sections, by infinitesimal displacements perpendicular to them- ing couples
-i , . p f , i , applied to

selves, into certain surfaces of anticlastic curvature, with equal the ends,

opposite curvatures in the principal sections
( 130) through

every point. This theory is due to St Venant, who not only

pointed out the falsity of the supposition admitted by several

previous writers, that Coulomb s law holds for other forms of

prism than the solid or hollow circular cylinder, but discovered

fully the nature of the requisite correction, reduced the deter

mination of it to a problem of pure mathematics, worked out

the solution for a great variety of important and curious cases,

VOL. ii. 16
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compared the results with observation in a manner satisfactory
and interesting to the naturalist, and gave conclusions of great
value to the practical engineer.

704 We take advantage f tQe identity of mathematical

totorlion
conditi n s St Venant s torsion problem, and a hydrokinetic

problem, problem first solved a few years earlier by Stokes*, to give
the following statement, which will be found very useful in

estimating deficiencies in torsional rigidity below the amount
calculated from the fallacious extension of Coulomb s law :

705. Conceive a liquid of density n completely filling a

closed infinitely light prismatic box of the same shape within

as the given elastic prism and of length unity, and let a couple
be applied to the box in a plane perpendicular to its length.

The effective moment of inertia of the liquidf will be equal to

the correction by which the torsional rigidity of the elastic

prism calculated by the false extension of Coulomb s law must

be diminished to give the true torsional rigidity.

Further, the actual shear of the solid, in any infinitely thin

plate of it between two normal sections, will at each point be,

when reckoned as a differential sliding ( 172) parallel to their

planes, equal to and in the same direction as the velocity of the

liquid relatively to the containing box.

Solution of 706. To prove these propositions and investigate the mathe-

probiem. matical equations of the problem, we first show that the con

ditions of the case
( 699) are verified by a state of strain

compounded of (1) a simple twist round the line through the

centres of inertia, and (2) a distorting of each normal section

by infinitesimal displacements perpendicular to its plane : then

find the interior and surface equations to determine this warp

ing : and lastly, calculate the actual moment of the couple to

which the mutual action between the matter on the two sides

of any normal section is equivalent.

Taking OX, OY in any normal section through any con

venient point (not necessarily its centre of inertia), and OZ per-

*
&quot;On some cases of Fluid Motion.&quot; Camb. Phil. Trans. 1843; or Hathe*

matical and Physical Papers, Stokes, Vol. i. , page 17.

t That is, the moment of inertia of a rigid solid which, as will be proved in

Vol. ii., may be fixed within the box, if the liquid be removed, to make its

motions the same as they are with the liquid in it.
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pendicular to them, let x + a, y + (3, z + y be the co-ordinates of

the position to which a point (x, y, z) of the unstrained solid is

displaced, in virtue of the compound strain just described. Thus

y will be a function of x and y, without z\ and, if the twist

(1) be denoted by T according to the simple twist reckoning of

120, we shall have

x + a = x cos (rz)
- y sin (TS), y + /3 = x sin (rz) + y cos (rz) . . .

(7).

Hence, for infinitely small values of z,

a, = -ryz, fi
= rxz ........................ (8).

Adhering to the notation of ^ 670, 693, only changing to Saxon Equations
,

,
, of strain,

letters, we have stress, and
j 7 internal

= 0, f = 0, g=0, & = rx + ^, fc=- Ty+^, c=0 ..... (9).
cly doc

Hence
[

693 (5)]
d
f\, Z7=0...(10).

And with the notation of 698, (8) and
(9),

3 = 0, v
2
a = 0, v

L

7? = .................... (11).

Hence if also -l^-l^O.. ...(12),

the equations of internal equilibrium [
698 (6)] are all satisfied.

For the surface traction, with the notation of 662, 700, we

have, by 662 (1),

^=0, =
0, H=Tsin.&amp;lt;j&amp;gt;

+
Scos&amp;lt;l&amp;gt;

........... .(13); Surface

or eliminating T and S by (10), and introducing dyjdp to denote be made

the rate of variation of y in the direction perpendicular to the

prismatic surface, and q (PE of 703) the distance from the

point of the surface for which H is expressed, to the intersection

of the tangent plane with a perpendicular from 0,

c s ^ + ~ sin &quot; T sn ~ x c s

To find the mutual action between the matter on the two Couple re

sides of a normal section, we first remark that, inasmuch as each traetion m
of the two parts of the compound strain considered (the twist

and the warping) separately fulfils the conditions of 700, we
must have

$$Tdxdy=$xHds9
and jjSdxdy = jyHds ......... (15).

1C 2
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Hydro-
kinetic ap
plication of

torsional

equation.

Hence when the prescribed surface condition H = is fulfilled,

we have jfTdxdy = Q, ffSdxdy = Q .... ............. (16),

and there remains only a couple

/(^-*V)^
in the plane of the normal section. That condition, by (14),

gives

= r(y sin &amp;lt; x cos
&amp;lt;/&amp;gt;)

. . . (18),
_JL = rq, or -==- cos

cly
,

dp cly d/x

for every point of the prismatic surface.

We shall see in Vol. II. that (12) and (18) are differential

equations which determine a function, y, of #, y, such that dyjdx
and dyjdy are the components of the velocity of a perfect liquid

initially at rest in a prismatic box as described in 705, and set

in motion by communicating to the box an angular velocity, T,

in the direction reckoned negative round OZ\ and that the

time-integral ( 297) of the continuous couple by which this is

done, however suddenly or gradually, is

which is the excess of nrff (x
3 + y

2

) dxdy over JV. Also, a and

fo in (9) are the components, parallel to OX and OY, of the

velocity of the liquid relatively to the box, since ry and TX are

the components of the velocity of a point (x} y) rotating in the

positive direction round OZ with the angular velocity r. Hence

the propositions ( 705) to be proved.

707. M. de St Venant finds solutions of these equations in

two ways : (A.) Taking any solution whatever of (12), he finds

a series of curves for each of which (18) is satisfied, and any
one of which, therefore, may be taken as the boundary of a

prism to which tbat solution shall be applicable : and (B.) By
the purely analytical method of Fourier, he solves (12), subject

to the surface equation (18), for the particular case of a rect

angular prism.

St Tenant s (A.) For this M. de St Venant finds a general integral of

solvable&quot;

Cf
*ne boundary condition, viewed as a differential equation in

cases. terms of the two variables x, y, thus : Multiplying (18) by ds,

and replacing sm&amp;lt;j&amp;gt;ds
and cos^ds by their values dy and dx,
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we have ^-^-^(^ + ^) = ...............(19).
solvable

In this the first two terms constitute a complete differential of a
ases

function of x and y, independent variables ; because y satisfies

(12). Thus, denoting this function by u, we have

dy du . dy du .......

-/ = 3-, and -/ = -- .................... (20),dx dy dy dx

and (19) becomes du -
\-rd (x

2 + y
2

)
=

0,

which requires that u - \T (x
2 + y

2

)
= G .................... (21),

for every point in the boundary. It is to be remarked that,

because

d dy _ d dy
dx dy dy dx

we have, from (20), n-J
= .........................(22);

or u also, as y, fulfils the equation y
2% = 0. A function,

algebraically homogeneous as to x, y, which satisfies this equation
is [Appendix B. (a)] a spherical harmonic independent of z.

Hence a homogeneous solution of integral degree i can only bo

the part of Appendix B. (39) not containing z. This is

where [Appendix B. (26)]

g= x + vy, and
rj
= x-vy,

v standing for ,J 1 ;

or, if we change the constants so that the constants may be real,

A {(x + vyY+ (x
-
vyY}

- vS {(x + vy? -(x- vyj} ...... (23),

or, in terms of polar co-ordinates,

2r (4 cos 10 + .5 sin i0) .................... (24).

Using this solution for the case i = 2 and (without loss of

generality) putting E = 0, we have

u=2A(x*-y
2

) ........................ (25);

whence by (20) y = -Axy .......................... (26);

and the equation (21) of the series of bounding curves to which

this solution is applicable is
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if we put, for brevity,

-C = a
-C

which give 4A = r
^ p ,

so that (26) becomes y&quot;-T-r o^ (28).

Using this in (17) we have

Solution for N= nr
{Jf (x

* + y*) dxdy _
&amp;lt;^ jj (a

, _^ dxd^
Cylinder.

or, if /, J denote the moments of inertia of the area of the

normal section, round the axes of x and y respectively,

N = nr$J+ 1-^^-1)1 (29);

or, lastly, as we have for the elliptic area (27),

. 6
2

, J = farab . a*,

(. \d + o&quot;) ) &2 + b !

Another very simple but most interesting case investigated

by M. de St Venant, is that arrived at by taking a harmonic of

the third degree for u. Thus, introducing a factor JT/# for

the sake of homogeneity and subsequent convenience, we have

T 1
JL ty& 3i/^x) ^T (x

2 + i/
2
} = C

a

St Tenant s or in polar co-ordinates, (31),
invention of
solvable _
cases - i - r

3
cos 30 - irr

2 = (7,
a J

as an equation giving, by different values of C, a series of

bounding lines, for which

Solution y = 1?
- (y

3 - 3x2
y) = - A -r3

sin 30 (32)
for equilate- 2 a \V &quot; JI 2 a \ &amp;gt;

ral triangle.

is the solution of (12), subject to (18). For the particular value

C = -^\a
2
r

(31) gives three straight lines, the sides of an equilateral

triangle having a for perpendicular from an angle to the opposite
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side, and placed relatively to x and y, as shown in the diagram Solution

( 708, below). Thus we have the complete solution of the mi triangle,

torsion problem for a prism whose normal section is an equi

lateral triangle. Equation (17) worked out for this area, with

(32) for y, gives

But (K being the proper moment of inertia of the triangle, and

A its area)

_ *; rA_ *
n* A _ __ A 2 .

9
~

and thus, for the torsional rigidity, we have the several ex

pressions

1 1 1 1 nA*

Similarly, taking for u a harmonic of the fourth degree and For curvi-

adj listing the constants to his wants, St Vanant finds the squares,

equation,

1 -
a\\ ............ ( O~t I

or r-arcos = l-a
}

to give, for different values of a, a series of curvilinear squares

(see diagram of 708 (3), below), all having rounded corners,

except two similar though differently turned curvilinear squares
with concave sides and acute angles corresponding to a = 5,

and a = ^ (^/2 1) ;
for each of which the torsion problem is

algebraically solved.

And by taking u the sum of two harmonics, of the fourth and For star

eighth degrees respectively, and properly adjusting the constants, rounded

he finds

48 16 &quot; &quot;^ y ^U ,12 18
4~9- TT- ^ + T!T-TT

.-(35),

as the equation of the curve shown in 709, diagram (4), for

which therefore the torsion problem is solved.

(B.) The integration (21) of the boundary equation, introduced

by St Tenant for use in his synthesis, (A.) is also very useful in
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St Tenant s

reduction
to Green s

problem.

the analytical investigation, although he has not so applied it.

First, we may remark, that the determination of u for a given

form of prism is a particular case of &quot;Green s problem&quot; proved

possible and determinate in Appendix A. (e) ; being to find u, a

function of x, y which shall satisfy the equation

d2u d2u _

Solution for

rectangular
prism,

found by
Fourier s

analysis.

for every point of the area bounded a certain given closed circuit,

subject to the condition,

.(36)u = JT (x
2 + y

2

)

for every point of the boundary.

When u is found, equations (20) and (17) with (10) complete

the solution of the torsion problem.

For the case of a rectangular prism, the solution is much

facilitated by taking

u --= v + A (x
2 - y

z

) + ,

d2
v d2

v
which gives -^-^ + -5-^

=
;ax ay

and for boundary condition,

,(37).

If the rectangle be not square, let its longer sides be parallel to

OX\ and let a, b be the lengths of each of the longer and each

of the shorter sides respectively. Take, now,

A=$T, and B = \rW ........................ (38).

The boundary condition becomes

v = when y = J

v = - T (^b
2

y
2

)
whenand

311 x = \d \

(39).

To solve the problem by Fourier s method (compare with the

more difficult problem of 655), the requisite expansion of

\b
2

y~ is clearly*

*
Obtainable, as a matter of course, from Fourier s general theorem, but most

easily by two successive integrations of the common formula

|TT
= COS -

\ cos 30 + i cos 59 - etc.
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-
|s

cos 3^? +J-3
cos 617 -etc.

|..-

where, for brevity rj
=

Tri//b. \
,,,x

And, for the same cause, putting %-Trxjb)

we have, for the form of solution,

oB(- -lh ......(42),

which satisfies (37), and gives v = for y =
J6. The

residual boundary condition gives, for determining
and

rv -(2*+l)ira/2& ,
T&amp;gt; +(2&amp;lt;+l)ira/2&-i &quot;1

L +i ^si+i 6
J

+(2i+l)ira/26 , TJ -(2i+l)ira/2&-| 8r5
8

(- I)
1

^-+i
&quot;~?~(2t + l)

8

These two equations give a common value for the two unknown

quantities ^2m &amp;gt; ^21+1^
W1^ wnicn (^2) becomes

(-1)*

From this we find, by (37), (38), and (20),

(_!)&amp;lt;
e
+(+_ c

- (+M
(2rpi7 g

+(+D/ + &amp;lt;

-(+i]ni/
ain (^

and (17) gives, for the torsional rigidity,

If we had proceeded in all respects as above, only taking A \r
instead of A =

^T, in (37), we should have obtained expres
sions for y and N/T, seemingly very different, but necessarily

giving the same values. These other expressions may be written

down immediately by making the interchange x, y, a, b for y, x,

b, a in (45) and (46), and changing the sign of each term of (45).

They obviously converge less rapidly than (45) and (46) if, as

we have supposed, a &amp;gt; b, and it is on this account that we pro
ceeded as above rather than in the other way. The comparison
of the results gives astonishing theorems of pure mathematics,
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Extension
to a class of
curvilinear

rectangles.

such as rarely fall to the lot of those mathematicians who confine

themselves to pure analysis or geometry, instead of allowing them

selves to be led into the rich and beautiful fields of mathematical

truth which lie in the way of physical research.

A relation discovered by Stokes* and Lamef independently

[which we have already used in equations (20), (22)] taken in

connexion with Lame&quot;
;

s method of curvilinear co-ordinates J, allows

us to extend the Fourier analytical method to a large class of

curvilinear rectangles, including the rectlinear rectangle as a

particular case, thus :

Lamp s Let be a function of x, y satisfying the equation
transforma
tion to plane
isothermal
co-ordi-
nates

and, as this shows that
dy--j-

dx is a complete differential,

let

or, which means the same,

^ = ^, and *U_^ (49).
dy dx dx dy

This other function
i] also, as we see from (49), satisfies the

equation

P.+P-O (50).dx2

dy-

Theorem of And, also because of (49), two intersecting curves, whose equa-

tionsare

*=4 T)
= B (51),

cut one another at right angles. Let now, A and B being

supposed given, x and y be determined by thee two equations.

The point whose co-ordinates are x, y may also be regarded as

specified by (A, ),
or by the values of

, 17,
which give curves

* On the Steady Motion of Incompressible Fluids. Camb. Phil. Trans.,

1842 ;
or Mathematical and Physical Papers, Stokes, Vol. i., page 1.

t Memoire sur les lois cle l quilibre du fluide ethere . Journal de VEcole

Polytechnique, 1834.

J See Thomson on the Equations of the Motion of Heat referred to Curvi

linear co-ordinates. Camb. Math. Journal, 1845; or Reprint of Mathematical

and Physical Papers, Art. ix.



707.] STATICS. 251

intersecting in
(a?, y). Thus (, 17)

with any particular values Theorem of

assigned to and
77, specifies a point in a plane. Common Lam!?

ar

rectilinear co-ordinates are clearly a particular case (rectilinear

orthogonal co-ordinates) of the system, of curvilinear orthogonal

co-ordinates thus defined. Let now u, any function of x, /, be

transformed into terms of
, 77.

We have, by differentiation,

d2u d?ud*u/de

tfu/drf d&amp;lt;f\ du(d^_ d^\ du/d^rj d*r)\ .

+
Jf \dtf

+
df)

+
d W +

df)
+

dr) (dx*
+
dy

z

)
( &amp;gt;

which is reduced by (49) and (50) to

+
:

+ .......... (53).2 *

d2u tfu
Hence the equation ^ -f-

j-^
-

d2u d2u /KA .

transforms into
-j-^

+
-j-2

=0 ....................... (04).

du dy du dy
Also the relations -j-j\ ~r =

~
~T

dy dx ax dy

transform, in virtue of (49), into

du dy du dy .--.

dj^dj d
=
~dj

.....................
^

Hence the general problem of finding u and y has precisely the

same statement in terms of
, ^7,

as that given above, (22), (36), plane iso-

and (20), in terms of x, y, with this exception, that we have not

u = ^r (

2 + if), but iff (, rj)
denote the function of

, 17
into

which x2 + y
2

transforms,

u JT/*(, rf)
for every point of the boundary ...... (56).

The solution for the curvilinear rectangle

is, on Fourier s plan,

where Aj, Ai are to be determined by two equations, obtained
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Solution for

rcctanple of

plane iso

thermal s.

thus : Equate the coefficient of sin i-n-^ja when 77
= and when

77
=

fi respectively to the coefficients of sin ITT^O. in the expansions

of /(, 0) and/(, (3)
in series of the form

Psin+P2 sm + P Sin + etc (59)a a a

by Fourier s theorem, 77. Similarly, Biy B{, are determined

from the expansions ofy*(0, 77)
and f(a, 77),

in series of the form

&amp;lt;?&amp;gt;n^

+
e,sin^+e&amp;gt;n^

+ etc (60).

Example. Of one extremely simple example, very interesting in theory

5ound&quot;eci by an(* valuable for practical mechanics, we shall indicate the
two COn- /Wail a
centric arcs details,

and two

Let =
&amp;lt;

This clearly satisfies (47); and it gives, by (48),

17
= tan 1 ?

(62).
3/

The solution may be expressed on the same plan as in (37)...

(45) by a series of sines of multiples of ny/a, if we take*

, 2
c
2^ cos

(
-

2^7) , QX
&quot;+**- -jr 2

(63)&amp;gt;

which, with (54), gives ^+0=0 (64),

and leaves, as boundary conditions in the solution for t?,

^^.j 1.221(^1)1 When^=0, ,1
\ cos ft j

o2a (. cos(/3-2r7){ ,
&amp;gt; (65).

v = \ra&quot;i \l
^

&quot;}
when ^ =

(
cos p )

and v = when
77
=

0, and when
77
=

/?.

The last condition shows that the B
i
and E( part of (58) is proper

for expressing v, and the first two determine B
i
and B[ as

usual.

It should be noticed that this solution fails for the case of /3
= 4(2i
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Or when it is best to have the result in series of sines of Rectangle
bounded by

multiples of vt/a ,
we may take two con

centric arcs
2a t ^ and two

I (66),
radiL

which, with (54), gives ^ +^ =
.

and leaves, as boundary conditions in the solution for w,

i

2a _ 1

e
2^

1 A when
77
=

0, and when rj
=

/3,

and w = when =
0, and when = a.

The last shows that the ^ and A{ part of (58) is proper for 10,

and the two first determine A^ A..

708. St Venant s treatise abounds in beautiful and instruc

tive graphical illustrations of his results, from which we select

the following :

(1) Elliptic cylinder. The plain and dotted curvilinear arcs contour

are
&quot; contour lines&quot; (coupes topographiques) of the section as mai section

of elliptic

c.v Under, as

warped by
torsion :

equilateral
hyperbolas.

-Y

warped by torsion
;
that is to say, lines in which it is cut by

a series of parallel planes, each perpendicular to the axis, or

lines for which 7 ( 706) has different constant values. These

lines are [ 707 (28)] equilateral hyperbolas in this case. The
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arrows indicate the direction of rotation in the part of the

prism above the plane of the diagram.

(2) Equilateral triangular

prism. The contour lines

are shown as in case (1) ;

the dotted curves being those

where the warped section

falls below the plane of the

diagram, the direction of

rotation of the part of the

prism above the plane be

ing indicated by the bent

arrow.

Diagram of (3) This diagram shows the series of lines represented by

(34) of 707, with the indicated values for a. It is remarkable

F
squares for
which tor
sion prob
lem is

solvable. X

that the values a = 5 and a = -(V2-l) give similar but

not equal curvilinear squares (hollow sides and acute angles),

one of them turned through half a right angle relatively to the

other. Everything in the diagram outside the larger of these
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squares is to be cat away as irrelevant to the physical problem ;

the series of closed curves remaining exhibits figures of prisms,

for any one of which the torsion problem is solved algebraically.

These figures vary continuously from a circle, inwards to one

of the acute-angled squares, and outwards to the other : each,

except these extremes, being a continuous closed curve with

no angles. The curves for a 0*4 and a= - 2 approach re

markably near to the rectilinear squares, partially indicated in

the diagram by dotted lines.

(4) This diagram shows the contour lines, in all respects Contour
lines for St

as in the cases (1) and (2), for the case of a prism having for venant s
x &quot;

Quatre
points ar-

rondis.&quot;

section the figure indicated. The portions of curve outside

the continuous closed curve are merely indications of mathe

matical extensions irrelevant to the physical problem.
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Contour
lines of nor
mal section
of square
prism, as

warped by
torsion.

iis shows as, in the other cases, the contour lines for

warped section of a square prism under torsion.

r

Elliptic (6) (7) (
8)- These are shaded drawings, showing the ap-

fiTre
e

ct*
nd

pearances presented by elliptic, square, and flat rectangular
angular bars ^ r&amp;gt;

B^^MTi^B Av^*rniiMiifi^ A]

bars under exaggerated torsion, as may be realized with such

a substance as India rubber.
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709. Inasmuch as the moment of inertia of a plane area Torsional

about an axis through its centre of inertia perpendicular to its Fn
g
propor

ss

plane is obviously equal to the sum of its moments of inertia ofprinc1p2

round any two axes through the same point, at right angles to rigidities

one another in its plane, the fallacious extension of Coulomb s cording to

law, referred to in 8 703, would make the torsional rigidity of a sion ( 703)&quot;
to J

of Cou-
bar of any section equal to n/M ( 694) multiplied into the sum lomb s law.

of its flexural rigidities (see below, 715) in any two planes at

right angles to one another through its length. The true theory,

as we have seen
( 705, 706), always gives a torsional rigidity

less than this. How great the deficiency may be expected to

be in cases in which the figure of the section presents project

ing angles, or considerable prominences (which may be imagined
from the hydrokinetic analogy we have given in 705), has

been pointed out by M. de St Venant, with the important

practical application, that strengthening ribs, or projections

(see, for instance, the fourth annexed diagram), such as are

introduced in engineering to give stiffness to beams, have the

reverse of a good effect when torsional rigidity or strength is an Ratios of

object, although they are truly of great value in increasing the r?g?dities

flexural rigidity, and giving strength to bear ordinary strains, solid clrcu-

which are always more or less flexural. With remarkable

ingenuity and mathematical skill he has drawn beautiful illus

trations of this important practical principle from his algebraic

and transcendental solutions [707 (32), (34), (35), (45)]. Thus

lar rods.

0.)
Rectilinear

square.

(2)
Square with curved
corners and hollow
sides; being curve,
a = 0-4, of 708 (3).

00
Square with acute

angles and hollow

(*)
Star with four
rounded points,
being a curve of

the eighth degree,
[ 707 (35)].

(5)

Equilateral
triangle.

84346.

88326.

8186. 778*.

8276.

5374.

6745.

60000.

72552

for an equilateral triangle, and for the rectilinear and three

curvilinear squares shown in the annexed diagram, he finds for

VOL. II. 17
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the torsional rigidities the values stated. The number im

mediately below the diagram indicates in each case the frac

tion which the true torsional rigidity is of the old fallacious

(a) of same estimate (703); the latter being the product of the rigidity

inertfa

1* f

of the substance into the moment of inertia of the cross section

round an axis perpendicular to its plane through its centre of

inertia. The second number indicates in each case the fraction

(6) of same which the torsional rigidity is of that of a solid circular cylinder

Serial. of the same sectional area.

Places of 710. M. de St Venant also calls attention to a conclusion

distortion from his solutions which to many may be startling, that in his
in twisted .

prisms. simpler cases the places of greatest distortion are those points

of the boundary which are nearest to the axis of the twisted

prism in each case, and the places of least distortion those

farthest from it. Thus in the elliptic cylinder the substance is

most strained at the ends of the smaller principal diameter, and

least at the ends of the greater. In the equilateral triangular

and square prisms there are longitudinal lines of maximum strain

through the middle of the sides. In the oblong rectangular

prism there are two lines of greater maximum strain through

the middles of the broader pair of sides, and two lines of less

maximum strain through the middles of the narrow sides. The

strain is, as we may judge from (705) the hydrokinetic ana

logy, excessively small, but not evanescent, in the projecting ribs

of a prism of the figure shown in (4) 709. It is quite evanes-

Soiidofany cent infinitely near the angle, in the triangular and rectangular

having prisms, and in each other case as (3) of 709, in which there

pyramidal is a finite angle, whether acute or obtuse, projecting outwards.
or conical

*

,

angles, This reminds us of a general remark we have to make, although
stress. consideration of space may oblige us to leave it without formal

proof. A solid of any elastic substance, isotropic or aeolotropic,

bounded by any surfaces presenting projecting edges or angles,

or re-entrant angles or edges, however obtuse, cannot experience

any finite stress or strain in the neighbourhood of a projecting

strain at angle (trihedral, polyhedral, or conical); in the neighbourhood

ang\esf
ng

of an edge, can only experience simple longitudinal stress

parallel to the neighbouring part of the edge; and generally



710.] STATICS. 259

experiences infinite stress and strain in the neighbourhood of

a re-entrant edge or angle ;
when influenced by any distribu- At re-en-

tion of force, exclusive of surface tractions infinitely near the infinite^
*

angles or edges in question. An important application of the Liability to

last part of this statement is the practical rule, well known in

mechanics, that every re-entering edge or angle ought to be entrant

rounded to prevent risk of rupture, in solid pieces designed to any places

r , i iv i j T_
of to sharP

bear stress. An illustration of these principles is attorned by concave
&quot;

curvature.

the concluding example of 707
;
in which we have the com

plete mathematical solution of the torsion problem for prisms cases of

of fan-shaped sections, such as the annexed figures. In the rectangles

cases corresponding to a = 0, we see, without working out the torsion pro-

solution, that the distortion
d&amp;lt;y/rdr)

vanishes when r = 0, if /3 is been solved.

&amp;lt; TT
;
becomes infinite when r 0, if ,3 is &amp;gt; TT

;
but is finite

and determinate if /3
= TT.

The solution indicated above determining v to satisfy (64) Distortion

and (65) of 707, if translated into polar co-ordinates r, r},
such central

that x = r cos
77,

and y = r sin
77,

with
TT//?

=
v, becomes merely sector (4),

, -I infinite at
this central

+ /r-fr)sint,y&amp;gt; ............... (69),

where it Bj are to be determined by the equations (65) of fheottf

707, with r = a arid r = a instead of = and =
a, and a 2 arigles -

instead of aVa
(a and a denoting the radii of the concave and

convex cylindrical surfaces respectively). When a = 0, these

give BI = ;
and therefore

( 7- )
is zero, or equal to JB cos

77, or infinite,
\ra?7/ r= o

according as v &amp;gt; 1,
=

1, or &amp;lt; 1
;
whence also follow similar results

*
Compare 707 (23) (24) ; by which we see that this solution is merely the

general expression in polar co-ordinates for series of spherical harmonics of x, y,
with 2 = 0, of degrees t, 2t, 3i, etc., and -i, -

2i,
-

3z, etc. These are &quot;complete

harmonics&quot; when i is unity or any integer.

172
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Problem of

flexure.

711. To prove the law of flexure
( 591, 592), and to

investigate the flexural rigidity (596) of a bar or wire of

isotropic substance, we shall first conceive the bar to be bent

into a circular arc, and investigate the application of force

necessary to do so, subject to the following conditions:

(1) All lines of it parallel to its length become circular arcs

in or parallel to the plane ZOX, with their centres in one line

perpendicular to this plane ;
OZ and all lines parallel to it

through Y being bent without change of length.

(2) All normal sections remain plane, and perpendicular

to those longitudinal lines, so that their planes come to pass

through that line of centres.

(3) No part of any normal section experiences deformation.

Y
of the beam be

ing chosen for

plane of refer

ence, XOY, let

P, (x,2/,z)beany

point of the un

bent, and jP,

(a ,2/ X) the same

point of the bent,

beam
;
each seen

in projection, on

the planeZOX,in

the diagram : and

let p bethe radius

of the arc ON
,

into which the

line ON of the straight beam is bent. We have

-cos-

But, according to the fundamental limitation
( 588), x is at

most infinitely small in comparison with p : and through any

length of the bar not exceeding its greatest transverse dimen-
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sion, z is so also. Hence we neglect higher powers of x/p and

z/p than the second in the preceding expressions ; and putting
x -x =

a, y -y =
fit

z -z= y,

we have a=
^&amp;gt;

^ = 7 = ~~ ....................
(1).

These, substituted in 693 (5) and 697 (2), give
Surface

re-

p Y ..(2). quired to

=0, T=Q, U=0, Ertion
J in normal

m n section.

.

The interpretation of this result is interesting in itself, but, not

requiring it for our present purpose, we leave it as an exercise
to the student.

712. The problem of simple flexure supposes that no force
is applied from without either as traction on the sides of the
bar, or as force acting at a distance on its interior substance,
but that, by opposing couples properly applied to its ends,
it is kept in a circular form, with strain and stress uniform

throughout its length.

To the a, /?, y of last section let corrections Correction

i 7^ / 2 u\ r&amp;gt;i rr , ^ to do awaya = JA (x -y\ ft
= Kxy, y =0, with lateral

be added. This will give, by 693 (5),
ami bodily

P = Q = 2mKx, R = 2(m-n)Kx, = 0, Z&quot; = 0, Z7 = 0,
and by 698 (2)

to be added to the P, Q...X, 7, Z. Hence if we take

the surface tractions on the sides of the bar and the bodily
forces are reduced to nothing ; so that if now

1m n 1 St Tenant s

we have
[ 670 (6) and 693

(6)]

m-n a- m-n a

....(2),

a=b=
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694 (6YI

[712.

flexure pro
blem.

\ -x

r p

= ~ JV
j, (3).

and 693

To complete the fulfilment of the conditions, it is only necessary-

tiiat the traction across each normal section be reducible to a

couple. Hence

JfRdxdy =
0,

or, by (3),

Plexure of a
bar.

Lino
through
centres of

inertia of
normal
sections
remains un
changed in

length.

Flexure

through
finite angle
in one
plane :

must be in
either oftwo
principal
planes, if

produced
simply by
balancing
couples on
the two
ends.

that is to say,

713. In order that no force, but only a bending couple,

may be transmitted along the rod, the centre of inertia of the

normal section must be in OY, that line of it in which it is

cut by the surface separating longitudinally stretched from

longitudinally shortened parts of the substance.

714. In our analytical expressions only an infinitely short

part of the beam has been considered; and it has not been

necessary to inquire whether the axis of the couple called into

play is or is not perpendicular to the plane of flexure. But

when so great a length of the beam is concerned, that the

change of direction
( 5) from one end to the other is finite,

the couples on the ends could not be directly opposed unless

their axes were both perpendicular to the plane of flexure,

inasmuch as each axis is in the proper normal section of the

rod. For finite flexure in a circular arc, without lateral con

straint, we must therefore have

ffRydxdy = ; whence, by (3), ffxydxdy = :

that is to say, the plane of flexure must be perpendicular to one

of the two principal axes of inertia of the normal section in

its own plane. This being the case, the moment of the whole

couple acting across each normal section is equal to the product

of the curvature, into the Young s modulus, into the moment
of inertia of the area of the normal section round its principal

axis perpendicular to the plane of flexure.
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For we have [712 (3)]

M
P

.(4).

715. Hence in a rod of isotropic substance the principal principal

axes of flexure (599) coincide with the principal axes of inertia rigidities

of the area of the normal section
;
and the corresponding

flexural rigidities [ 596] are the moments of inertia of this

area round these axes multiplied by Young s modulus.

716. The interpretation of the results [ 712 (2), (3)] to

which the analytical investigation has led us is simply that if

we imagine the whole rod divided, parallel to its length, into

infinitesimal filaments (prisms when the rod is straight), each

of these shrinks or swells laterally with sensibly the same

freedom as if it were separated from the rest of the substance,

and becomes elongated or shortened in a straight line to the

same extent as it is really elongated or shortened in the circular

arc which it becomes in the bent rod. The distortion of the

cross section by which these changes of lateral dimensions are

necessarily accompanied is illustrated in the annexed diagram,

Geometrical
interpreta
tion of dis

tortion in

normal
plane.

C

D
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Anticiastic in which either the whole normal section of a rectangular beam,
curvatures or a rectangular area in the normal section of a beam of any
produced in

. . -11
the four

figure, is represented in its strained and unstrained figures,

rectangular with the central point common to the two. The flexure
prism by
flexure in a

j n m planes perpendicular to FOFj, and concave upwards (or

plane. towards JT); G the centre of curvature, being in the direction

indicated, but too far to be included in the diagram. The

straight sides AC, BD, and all straight lines parallel to them,

of the unstrained rectangular area become concentric arcs

of circles concave in the opposite direction, their centre of

curvature, H, being for rods of gelatinous substance, or of glass

or metal, from 2 to 4 times as far from on one side as G
is on the other. Thus the originally plane sides AC, BD
of a rectangular bar become anticlastic surfaces, of curvatures

1/p and a/p, in the two principal sections. A flat rectangular,

or a square, rod of India rubber [for which er amounts ( 684)

to very nearly ^-,
and which is susceptible of very great amounts

of strain without utter loss of corresponding elastic action],

exhibits this phenomenon remarkably well.

Experi- 717. The conditional limitation ( 588), that the curvature is

iHuTtrttion. to be very small in comparison with that of a circle of radius

equal to the greatest diameter of the normal section (not ob

viously necessary, and indeed not generally known to be neces

sary, we believe, when the greatest diameter is perpendicular

to the plane of curvature), now receives its full explanation.

For unless the breadth, AC, of the bar (or diameter perpen

dicular to the plane of flexure) be very small in comparison

with the mean proportional between the radius, OH, and the

thickness, AB, the distances from OF to the corners A
,
C

uncaicu- would fall short of the half thickness, OE, and the distances

to B
,
D would exceed it by differences comparable with its

own amount. This would give rise to sensibly less and greater

shortenings and stretchings in the filaments towards the corners

than those expressed in our formulae [ 712 (2)], and so vitiate

the solution. Unhappily mathematicians have not hitherto

succeeded in solving, possibly not even tried to solve, the

beautiful problem thus presented by the flexure of a broad

very thin band (such as a watch spring) into a circle of radius
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comparable with a third proportional to its thickness and its

breadth. See 657.

718. But, provided the radius of curvature of the flexure Hence

is not only a large multiple of the qreatest diameter, but also for stricter

-,.-, . T ,.
*&quot;

. i i limitation,
of a third proportional to the diameters in and perpendicular 628, of

. curvature

to the plane of flexure : then however great may be the ratio than 588

.
when a thin

of the greatest diameter to the least, the preceding solution is

applicable ;
and it is remarkable that the necessary distortion

of the normal section (illustrated in the diagram of 716)

does not sensibly impede the free lateral contractions and

expansions in the filaments, even in the case of a broad thin

lamina (whether of precisely rectangular section, or of unequal
thicknesses in different parts).

719. Considering now a uniform thin broad lamina bent Transition

in the manner supposed in the preceding solution, we have of a plate,

precisely the case of a plate under the influence of a simple

bending stress ( 638). If the breadth be a, and the thickness

b, the moment of inertia of the cross section is ^tf.ab, and Flexure of a

therefore the flexural rigidity is -^Mdb
9

t
or -f$Mb

s
if the breadth single bend-

be unity. Hence a coupleK ( 637) would bend it to the curva- by
g
simui-

ture I2K/Mb
3

length-wise (or across its length), and
( 716) bending

would produce the curvature 12crK/Mb
3 breadth-wise (or two planes

across the breadth), but with concavity turned in the contrary angles to

direction. Precisely the same solution applies to the effect of

a bending stress, consisting of balancing couples applied to

the two edges, to bend it across the dimension which hitherto

we have been calling its breadth. And by the principle of

superposition we may simultaneously apply a pair of balancing

couples to each pair of parallel sides of a rectangular plate,

without altering by either balancing system the effect of the

other
;
so that the whole effect will be the geometrical result

ant of the two effects calculated separately. Thus, a square

plate of thickness b
}
and with each side of length unity, being

given, let pairs of balancing couples K on one pair of opposite

sides, and A on the other pair, be applied, each tending to pro

duce concavity in the same direction when positive. If K and
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X denote the whole curvatures produced in the planes of these

couples, we shall have

-Lr3 (K-&amp;lt;rA) (1),

and X

stress in 720. To find what the couples must be to produce simply

curvature-, cylindrical curvature, K, let X = 0. We have

and

in spherical Or to produce spherical curvature, let K = X. This gives
curvature:

inanti- Or lastly, to produce anticlastic curvature, equal in the two

curvature, directions, let K = - X. This gives

(5).

Hence, comparing with 641 (10) and 642 (16), we have, for

A the cylindrical rigidity, and for j) and fc the synclastic and

anticlastic rigidities of a uniform plate of isotropic material,

Mb3

A
&quot;I *&quot;

1

m*

1
ML 3

rigidities
J 1^]_0- 1

^l-j-CT
&amp;gt;

of a plate:

n- or
[ 694 (6) and 698 (5)]

clastic, (fe) x
,
3

v onkb n(om n)o ^ i 73
y 0/07^ i /i ^ \ ^&amp;gt; /^.. i rr\ j

B&quot;

,...(6).

The coefficient ^4 which appears in the equation of equilibrium

of a plate urged by any forces
[

644 (6) and 649... 652],

and c, which appears in its boundary conditions, are
[

642 (16)]

given in terms of |) and fe thus simply :

fe, c=iU)-fc) , (7).
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721. It is interesting and instructive to investigate the Same result... forunti-

anticlastic flexure of a plate by viewing it as an extreme case clastic flex-
1

ureofaplate
of torsion. Consider first a flat bar of rectangular section Jfg

d at

uniformly twisted by the proper application of tangential trac- transition

tions
[ 706 (10)] on its ends. Let now its breadth be com-

parable with its length ; equal, for instance, to its length. We Prism -

thus have a square plate twisted by opposing couples applied
in the planes of two opposite edges, and so distributed over

these areas as to cause uniform action in all sections parallel

to them when the other two edges are left quite free. If, lastly,

we suppose the thickness, b, infinitely small in comparison with

the breadth, a, in (46) of 707, we have

N=$nTab* ........................... (8).

The twist r per unit of length gives ar in the length a, which

[ 640 (4)] is equivalent to an anticlastic curvature -m (according

to the notation of 639), equal to r. And the balancing couple

N applied in only one pair of opposite sides of the square is, as

we see by 656, equivalent to an anticlastic stress (according

to the notation of 637) H = %N/a. Hence, for the anti-

clastic rigidity, according to 642 (13), we have

which agrees with the value (6) otherwise found in 720, by
the composition of flexures.

It is most important to remark (1) That one-half of the Analysis of
1 v traction in

part \nrab
3
in the value of N given by the formula (46) of normal

3 J \ /
section of

707, is derived from a and B as given by (8) of 706, and the twisted

rectangular
term - rxy of y by (45) ;

and (2) That if we denote by y prism.

the transcendental series completing the expression (45) for
y,

it is the term nffx
-~- dxdy of 706 (17), that makes up the

other half of the part of N in question, and that it does so as

follows, according to the process of integrating by parts, in which

it is to be remembered that to change the sign of either x or y,

simply changes the sign of y :

xGdx =
r?z r%a rx

a Gdx-Z\ dx\ G
J Jo Jo
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Analysis of
traction in
normal
section of
twisted

rectangular
prism.

Composi
tion of
action in

normal sec
tion of a

long rect

angular
lamina
under tor
sion.

where G

ABSTRACT DYNAMICS.

dy

[721.

y= n I -=- dy = 2ny y=^
j $b dy

(2i+ I)
3

(2i+l)ra/J&amp;gt;&
6
-(2i+l)7ra/2b

Thus in N we have a term

SB ()

/**~ 7 16nrtt.._, If, 2 \a i C,c/x= -j-62 . 4 |1- (M+1)ira/26 _(2&amp;lt;+i)TO/26f
* y^-j^

~
u.y i^

v
-t- C ^

or, because [as we see, by integrating (40) with reference to y,

and putting y --
J6],

etafc-

Gdx
+

(12).

The transcendental series constituting the second term of this,

together with

makes up the transcendental series which appears in the ex

pression (46) for N. This, when a/b is infinite, vanishes in

comparison with the first term of (46), as we have seen above

721 (8).
But in examining, as now, the composition of the

expression, it is to be remarked that, when a/b is infinite, y
vanishes except for values of x differing infinitely little from

Ja, and therefore we see at once that in this case,

[to [& / dy dy \ [to
fi& dy fta

n I dx I dy (x -/-
- y - -

}
= na I dx I -/- dy = a I Gdx.

J-la J-V&amp;gt;
\ dy dx/ Jo J-&dy Jo

by which, in connexion with what precedes, we see that

722. One half of the couple on each of the edges, by which

these conditions are fulfilled, consists of two tangential tractions

distributed over areas of the edge infinitely near its ends acting

perpendicularly to the plate towards opposite parts. The other

half consists of forces parallel to the length of the edges, uni

formly distributed through the length, and varying across it in

simple proportion to the distance, positive or negative, from its

middle line.
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723. If now we remove the former half, and apply instead,

over the edges (BI?, AA )
hitherto free, a uniform distribution

of couple equal and similar to the latter half, and in the proper

directions to keep up the

same twist through the

plate, we have the proper^

edge tractions to fulfil

Poisson s three boundary
conditions

( 645) for the

case in question ;
that is

to say, we have such a

distribution of tractions

on the four edges of a square plate as produces anticlastic

stress ( 638) uniform not only through all of the plate at

distances from the edges great in comparison with the thick

ness, but throughout the plate up to the very edges. The state

of strain and stress through the plate is represented by the

following formulae [as we may gather from 706 and 707 (8),

(45), (9), (10), (17), and 722, or, as we see directly, by the

verification which the operations now indicated present] :

Uniform
distribution
of couple
applied to
its edges to
render the
stress uni
form from
the edges
inwards.

Tyz, ft
= TXZ, 7 =

f = g
=

0, a = 0, b = -
2ry,

=

,
7=0

rha nb
-Z, = JV=- Tydydx = lmatf

j \a,J J6

..-(13;,

Algebraic
solution

expressing
displace
ment,
strain, and
stress,

through a

plate bent
to uniform
anticlastic

curvature.

where L and N denote the moments (with signs reckoned as

in 551) of the whole amounts of couple, applied to the two

edges perpendicular to OX and OZ respectively, in the planes
of these edges.

By turning the axes OX, OZ through 45 in their own plane,

we fall back on the formulae of flexure as in 719, for the

particular case of equal flexures in the two opposite directions.

724. If, on the other hand, we superimpose on the state of

strain investigated in 721, another produced by applying on
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jected to

the edge-
tractioii of

647.

Thinrect- the pair of edges which it leaves free, precisely the same

plate sub- entire distribution of couple as that described in 722, but

in the direction opposite to the twist which the former gave
to the plate (so that now it is not L, but L that is equal

to N), we have the square

plate precisely in the con

dition described in 647,

except infinitely near its

corners. To find the ex

pressions for the com

ponents of displacement,

strain, and stress, in this

case, we must add to the

expressions for a, /?, 7 in (8) of 706, and (45) of 707, values

obtained by changing the sign of each of these expressions,

and interchanging x for z, and a for 7. The consequent values

of t, f, g, a, fc, C, P, Q, R, S, T, U, are of course obtained in the

same way, but need not be written down, as they can be seen

in a moment from a, /3, 7. Lastly, the strain thus superimposed

would, if existing alone, leave the edges parallel to x free from

traction, just as the first supposed strain [ 706 (8)] leaves the

edges parallel to z free
;
and thus, without fresh integration,

we see that N has still the value (46), and is the result of

the distribution of tractions described in 722. The parts of

the component displacements represented by products of co

ordinates disappear, and only transcendental series, as follows

remain :

sin 2 * +

(14).

725. When a/b is infinite,
++la2

becomes infinitely

great, and e~
l** 1)/26

infinitely small. If then we put

^a z = z
,
and \ a x = x

,

the preceding expressions become



725.] STATICS. 271

i;^-^-r*)-*&amp;lt;
for points not infinitely near the edge A B ;

8r .
2 (-1)*

^ TT
3 ^?i 4. 1 \^

Thin rect

angular
plate sub
jected to

the edge-
traction of

647.

.(15).

for points not infinitely near the edge AA ;

a = 0, y = 0, for all points not infinitely near an edge ;

and ft
= throughout,

Lastly, L =N = ^nrab
3

,

of each of which one-half is constituted by tractions

uniformly distributed along the corresponding edge,

and proportional to distances from the middle line;

and the other by tractions infinitely near the corners

and perpendicular to the plate.

726. It is clear that if the corners were rounded off, or the Transition

. , , . , to plate

plate were of any shape without corners, that is to say, with no without1-11 i- /.
corners sub-

part of its edge where the radius of curvature is not very great jected to
J &

edge-trac-

in comparison with the thickness, the effect of applying a dis- tionof 647.

tribution of couple all round its edge in tbe manner defined in

647 would be expressed by either of these last formulae for

a and 7. Thus the whole displacement of the substance will be

parallel to the edge for all points infinitely near it; will vanish

for all other points of tbe plate; and will be equal to the pre

ceding expression (15) for 7 if x denote simply distance from

the nearest point of the edge of tbe plate, and y, as in all these

formulae, distance from the middle surface

727. We may conclude that if a uniform plate, bounded by
an edge everywhere perpendicular to its sides, and of thickness

a small fraction of tbe smallest radius of curvature of the edge
at any point, be subjected to the action described in 647,

witb the more particular condition tbat the distribution of tan

gential traction is [as asserted in 634 (3) for any normal

section remote from the boundary of a bent plate] in simple

proportion to the distance, positive or negative, from the middle

line of the edge ;
the interior strain and stress will be as

specified by the following statement and formulae :
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Origin Let be any point in one corner of the edge : and let OX be
shifted from , . ,

*
. .

middle perpendicular to the edge inwards, and 1 perpendicular to the

side of plate, plane of the plate. The displacement of any particle P, (a?, y) t at

any distance from not

a considerable multiple
of the thickness, b, will

be perpendicular to the
traction of

plane YOX
t

and (de

noted by 7) will be

Displace
ment of

substance
)roduced

647.
ft!

given by the formula

a n i-6^ f
-

O

cos

JC

COS + etc
.)

(16),

vestigated.

where H denotes the amount of the couple per unit length of

the edge, and n the rigidity ( 680) of the substance. But the

simplest and easiest way of arriving at this result is to solve

directly by Fourier s analytical method the following problem,
a case of one of the general problems of 696:

Case of 647 728. A uniform plane plate of thickness b, extending to in-

finitv on one side of a straight edge (or plane perpendicular to
.

J
. , , , .

its sides) being given,

It is required to find the displacement, strain, and stress,

produced by tangential traction parallel to the edge applied

uniformly along the edge, according to a given arbitrary func

tion, &amp;lt;f)(y),
of position on its breadth.

Taking co-ordinates as in 727, we have to solve equations

(2) of 697, with JT-0, Y=Q, Z--=&, for all* points of space

for which x is positive, and y between and b, subject to the

boundary conditions,

See 661, or

662(1); also

693 (5), and 1
~ U

670 (6).

0, E = 0, S= 0, T=0, J7=0,

0, R= Q, S = 0, 17=0, r=0(y), when

and a= 0, /3
= 0, 7 = 0, when x -co.

x=0: I (17).

From these, inasmuch as a, ft, y must each be independent of

2, we find
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(a) -j\
+ -T-*Z

=
0, throughout the solid

;

(&amp;gt;) y = when x = oo
;

dy
(c) 71-^

= when y = or b j

ay

and (d) n-j-
=

&amp;lt;t&amp;gt; (y) when x ;

Case of 647

independ
ently in-

vestigaf ed.

(is);

and all the equations, both internal and superficial, involving

a and (3 are satisfied by a = 0, /?
= 0, and therefore (App. C.)

require a = 0, ft 0. By means of (a), (b), and
(c)

the Fourier

solution is seen to be of the form

7 =
2A-e&quot;&-cos-^

(19);

and, because of (d),
the coefficients Ai are to be found so as to

make

mr
^.

. i-rry
.

/9fk\

They are therefore [as we see by taking in 77, (13) and (14),

&amp;lt; such that &amp;lt; (p )
=

&amp;lt; (), and putting p =
26] as follows :

If (for the particular case of 727) we take

O

we find A
a
.= Q, and A

2
.

+1
= 6

( )
: 3 (23),

and so arrive at the result (16).

729. It is remarkable how very rapidly the whole disturb- Rapid de-

ance represented by this result diminishes inwards from the disturbance

edge where the disturbing traction is applied (compare 586) :
inwards.

also how very much more rapidly the second term diminishes

than the first; and so on.

Thus as

= 2-71828,

VOL. II.

4-801, C
2i303

=10, --23-141, 535-5,

18
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Rapid de- we have for

disturbance 1 ~ O /2\ 3
/COS 7T7//6 COS 37T?//6 COS 5iry/b

-1A _ O /2\ 3

/cos7r2//6 cos Sirylb cos 07ry/6 \

7 w&W VTSOT ~33
.4-8018+ 5

3
.4-801

5
~ tC

7
2-303. . O /2\ 3 /cos Try/6 cos 3?rv/6 cos 5^/6 \

-v 6 y eaw v~io~&quot; &quot;3no~
+ SM O&quot;

~ etc
v

, _ fi

O / 2\ 3
/cosiwy/6 cos 3?r?//6 cos 5^/6 \

7
~

nb\7r) \ 23-14 3
3
.23-14

3
5
3

. 23-14
5

&quot;

/

O /2\
3
/cos 7rj//6 cos 3iry/b cos Siryjb \

wh \ TT / \ ^) ^ ^)
* ^ ^^ oS^)*^i^ ^)^ ^S^^i*^^ */

which proves most strikingly the concluding statement of 647.

Problems to 730. We regret that limits of space compel us to leave

uninvestigated the torsion- flexure rigidities of a prism and the

flexural rigidities of a plate of aeolotropic substance : and to

still confine ourselves to isotropic substance when, in conclu

sion, we proceed to find the complete integrals of the equations

[ 697 (2)] of internal equilibrium for an infinite solid under

the influence of any given forces, and the harmonic solutions

suitable for problems regarding spheres and spherical shells,

and solid and hollow circular cylinders ( 738) under plane

strain. The problem to be solved for the infinite solid is this:

General Let in (6) of 698, X, Y, Z be any arbitrary functions what-

ever of (oc, y, ^), either discontinuous and vanishing in all points

outside some finite closed surface, or continuous and vanishing at

all infinitely distant points with sufficient convergency to make

RD converge to as D increases to oo
, if R be the resultant of

X, Y, Z for any point at distance D from origin. It is required

to find a, /5, 7 satisfying those equations [(6) of 698], subject

to the condition of each vanishing for infinitely distant points

(that is, for infinite values ofx, y, or 2).

solved for () Taking of the first of these equations, of the

isotropic
** &quot;0

substance. ^
second, and -=- of the third, and adding, we have

ClZ

dX dY dZ m(m + n) v3 + -7
- +-7- + -r- = ..... ..... - ...... 0)-v ; v dx dy dz
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(b) This shows that if we imagine a mass distributed through

space, with density p given by

1 (dX dY dZ\
+ *&quot;- 2

8 must be equal to its potential at
(aj, y, z). For

[
491

(c)] if

V be this potential we have

Subtracting this from (1) divided by (m + n), we have

V (8-F) = ........................... (3),

for all values of (x, y, z).
Now the convergency of XDt YD,

ZD to zero when D is infinite, clearly makes F=0 for all

infinitely distant points. Hence if S be any closed surface

round the origin of co-ordinates, everywhere infinitely distant

from it, the function (8 V) is zero for all points of it, and

satisfies (3) for all points within it. Hence [App. A.
(e)] we

must have 8= F. In other words, the fact that (1) holds for all

points of space gives determinately

dX dY dZ General

i
8 =

47r

grated

where X
,
Y

,
Z1

denote the values of X, Y
}
Z for any point

(x , y ,
z

).

(c) Modifying by integration by parts, and attending to the

prescribed condition of convergences, according to which, when
x is infinite,

rdW
J[(x- x Y + (y

- yj + (, -zTl
-

(5)

we have

-1

which for most purposes is more convenient than (4).

(d) On precisely the same plan as (b) we now integrate each

of the three equations (6) of 698 separately for a, ft y
respectively, and find

a = u+U, /3
= v+V, y =w+W (7)

where u, v, w, U, F, W denote the potentials at (x, y, z) of

182
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General
equations
for infinite

isotropic
solid inte

grated.

Force
applied
uniformly
to spherical
portion of
infinite

homogene
ous solid.

8

and

Dilatation

produced
by it.

distributions of matter through all space of densities respec

tively

m d8 _w^dS m d% X Y Z
4:irn dx 4?m dy 4?ra dz

in other words, such functions that

O, etc., (8),

each through all space. Thus if
8&quot;, X&quot;, Y&quot;,

Z&quot; denote the

values of 8, X, Y, Z for a point (&quot;, y&quot;, z&quot;),
we find, for a,

&quot;*

.....

if in this we substitute for 8&quot; its value by (6) we have a ex

pressed by the sum of a sextuple integral and a triple integral,

the latter being the U of (7) ;
and similarly for j3 and y.

These

expressions may, however, be greatly simplified, since we shall

see presently that each of the sextuple integrals may be reduced

to a triple integral.

(e) As a particular case, let X
} Y, Z be each constant

throughout a spherical space having its centre at the origin and

radius a, and zero everywhere else. This by (6) will make 8

the sum of the products of X, Y, Z respectively into the

corresponding component attractions of a uniform distribution of

matter of density I/^TT (m + n) through this space. Hence

[
491

(6)]

^ -a (Xx + Yy + Zz) for points outside the spherical space,

-1
(Xx + Yy+ Zz) for points within the spherical space.

(10).

3 (m + n)

Now we may divide u of (8) into two parts, u and
u&quot;, dej (end

ing on the values of d$/dx within and without the spherical

space respectively; so that we have,

for r &amp;lt; a,

for r &amp;gt; a,

?&amp;gt;n (m + n)

VV = 0;

,
a constant,

|

I
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for r &amp;lt; a, vV = 0,
^| investipa-

75,
tion of clis-

,. m ao . . . placement.
for r &amp;gt; a, V u = ---7- ,

which is a
n ax

} (12}.
solid spherical harmonic of degree

-
3, because 8

is given by the first of equations (10).

The solution of (11), being simply the potential due to a uniform

i f T -, 1 mX
sphere of density

- =
-,

--
x ,

is of course
4?r 3n (m + n)

u = -

(3a
2 - r

2

)
for r &amp;lt; a,ISn (m + n)

,u = - --r for r &amp;gt; a.
9n (m + n) r

Again, if in (12) of App. B. we put m =
2, n=&amp;gt; 3, and

F_8
= d&/dx, we have

since, for r &amp;gt; a, d$/dx is a spherical harmonic of order - 3. And

r*d$/dxis [App. B. (13)] a solid harmonic of degree 2: hence

if [d$/dx] denote, for any point within the spherical space, the

same algebraic expression as d$/dx by (10) for the external space,

-i I -T- is a function which, for all the interior space, satisfies
a? \jdx]

the equation V
2u = 0, and is equal to r

2
d&/dx for points infinitely

near the surface, outside and inside respectively. Hence -1-7-

for interior space, and r
2

dS/dx for exterior space, constitute the Force

potential of a distribution of matter of density ^d8/irdx outside

the spherical space and zero within, and, so far as yet tested,

any layer of matter whatever distributed over the separating

spherical surface. To find the surface density of this layer we

first, for an exterior point infinitely near the surface, take

(
x +y + 2 -7- ) (V-y-j, which may be denoted by {rH\.

\ dx y
dy dzj \ dxj

and, for an interior point infinitely near the surface,

/ d d d\/r5

rd8~\\ r
.

( x-r- * V -- + * -r-.J I -5 T- I h which may be denoted by - rJH,
\ dx J

dy dzj\a
3

\_dx\J
J L J
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applied Then, remembering that e-7-+2/-T
- + 3-T-is the same as r -=-

,

uniformly
^x ^V &quot;&quot; ^r

portion of
1

according to the notation of App. A. (a); we find [by App. B. (5)]
infinite

homosrene- dd j rm o l

ous solid. \ lit = T -7 . and \M \

= 4 -

Therefore, as r
s

d&/dx for external space is independent of r, and

as r differs infinitely little from a for each of the two points,

But {72} and
[72] being the radial components of the force at

points infinitely near one another outside and inside, correspond

ing to the supposed distribution of potential, it follows from 478

that to produce this distribution there must be a layer of matter

on the separating surface, having j- ({72}
-

[72]) for surface

density. But, inasmuch as {72} [72] is a surface harmonic of

the second order, the potential due to that surface distribution

alone is
[

536 (4)]

r
2

i
({72}

-
[72]) through the inner space,

and \ ({R} [R]) -5 through the outer space ;
T

or, according to the value found above for {R} [72],

-| -T- through the inner space,

and -|
a2

through the outer space.

Subtracting now this distribution of potential from the whole dis

tribution formerly supposed, we find

2 r 7
&amp;lt;j&amp;gt;

i j &amp;lt;S

j ~i I -T- I
for the inner space, and (r

2 - fa
2

) -y- for the outer,

as the distribution of potential due simply to an external dis

tribution of matter, of density ^dB/Trdx, with no surface layer.

Hence, and by (14), we see that the solution of (12) is

u&quot; = i- . |- i I T~ I

f r r &amp;lt; a
)

L&amp;lt;&

js [ (15).

-7- for r&amp;gt; a.
ax j
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And [(8) showing that U is the potential of a distribution of

matter of density equal to Xlirri\ as X is constant through the

spherical space and zero everywhere outside it, we have

&amp;lt;7
= _ 3a2 -r2

)
for r&amp;lt;o,

This, with (13), (15), and (10), gives by (7)

for r&amp;lt;a
t

and for r &amp;gt; a,

(17),

with symmetrical expressions for /? and y.

731. A detailed examination of this result, with graphic

illustrations of the displacements, strains, and stresses con

cerned, is of extreme interest in the theory of the transmission

of force through solids; but we reluctantly confine ourselves

to the solution of the general problem of 730.

To deduce which, we have now only to remark that if a becomes Displace-

iiifiiiitely small, X, Y, Z remaining finite, the expressions for

a, /?, y become infinitely small, even within the space of applica-

tion of the force, and at distances outside it great in comparison...-IT of an infl-
with a, they become nite elastic

solid,

V 0/0 .X ,
d

2(2m+3n) -- mr2
-=

v r dx

/2
= etc.

} 7 = etc.

where F denotes the volume of the sphere. As these depend

simply on the whole amount of the force (its components being

XV, TV, ZV\ and when it is given are independent of the

radius of the sphere, the same formulae express the effect of the

same whole amount of force distributed through an infinitely

small space of any form not extending in any direction to more

than an infinitely small distance from the origin of co-ordinates.
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Hence, recurring to the notation of 730 (6), we have for the

required general solution

2
d X (x-x )

+ Y (y-y ) + Z (z-z )\ 1

D&quot; dx~ ~V*~
~~

Displace
ment pro
duced by
any distri

bution of

force

through an
infinite

elastic solid.

D dz D* )

where D = J{(x
- x

)

2 + (y- y )

2 +
(
- z

)

2

},

/// denotes integration through all space, and X
,
Y

,
Z are three

arbitrary functions of x
, y ,

z restricted only by the convergency
condition of 730.

This solution was first given by Sir William Thomson, though
in a somewhat different form, in the Cambridge and Dublin

Mathematical Journal, 1848, On the Equations of Equilibrium

of an Elastic Solid. [See Mathematical and Physical Papers,

Thomson, Vol.
I.]

Comparing it with (9), we now see the promised reduction of

the sextuple integral involved in that expression to a triple

integral.

The process (e) by which it is effected consists virtually of

the evaluation of a certain triple integral by the proper solution of

the partial differential equation V2 F+ 4?rp
=

[like that formerly

worked out
( 649) for the much simpler case of p merely a

function of
r\.

Proof of the result by direct integration is a

good exercise in the integral calculus.

Application 732. In SS 730, 731 the imagined subject has been a homo-
to problem . , ....

J
,

.

of 696. geneous elastic solid filling all space, and experiencing the

effect of a given distribution of force acting bodily on its

substance. The solution, besides the interesting application

indicated in 731, is useful for simplifying the practical pro

blem of 696, by reducing it immediately to the case in which

no force acts on the interior substance of the body, thus:

General
problem of

696 reduced
to case of no
bodily force.

The equations to be satisfied being (6) of 698, throughout

the portion of space occupied by the body, and certain equations

for all points of its boundary expressing that the surface displace

ments or tractions fulfil the prescribed conditions; let
v

a,

v

/?, V
be functions of (x, y, &}, which satisfy the equations

(19).
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+ X=Q n f
\8 + f +r=0 n 2V + m + Z=0

dx dy dz

where, for brevity, (O.

^-U-^J. 7
O r = -r =

,

dx dy dz

through the space occupied by the body. Then, if we put
\ n \ r\

, r&amp;gt;

N /O\a=a + a
/5 (3=f3 + p l , 7=7 +

7,, (/i

we see that to complete the solution we have only to find a
/} /

y/}
as determined by the equations

~ da. d/3, dy.
o = + 4- .

dx dy dz

to be fulfilled throughout the space occupied by the body, and

certain equations for all points of its boundary, found by sub

tracting from the prescribed values of the surface displacement

or traction, as the case may be, components of displacement or

traction calculated from X v

/?,

v

y.

Values for a,
v

/?,

v

y may always be found according to 730,

731, by supposing equations (1) 732 to hold through all space,

and X, Y, Z to be discontinuous functions, having the given

values for all points of the body, and being each zero for all

points of space not belonging to it. But all that is necessary is

that (1) be satisfied through the space actually occupied by the

body; and in some of the most important practical cases this

condition may be more easily fulfilled otherwise than by deter

mining X v

/?,

N

y in that way with its superadded condition for

the rest of space.

733. Thus, for example, let us suppose the forces to be important

such that Xdx + Ydy +Zdz
l
is the differential of a function, Wt

1 Let TO be the mass of any small part of the body, x, y, z its co-ordinates at

any time, and Pm, Qm, Em the components of the force acting on it. If the

system be conservative, Pdx + Qdy + Edz must be the differential of a function of

a&amp;lt;, y, z. Let, for instance, the forces on all parts of the body be due to attractions

or repulsions from fixed matter
;
and let the particle considered be the matter of

the body within an infinitely small volume 8xdy5z. Then we have Pm= Xdxdydz,

etc.
;
and therefore, if p be the density of the matter of TO, so that pdx5ydz=m,

we have, in the notation of the text, Pp-X, Qp=Y, Ep=Z; and therefore
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important of x, y, z considered as independent variables. This assump-
class of . . , PI .

cases, tion includes some of the most important and interesting

practical applications, among which are

(1) A homogeneous isotropic body acted on by gravitation

sensibly uniform and in parallel lines, as in the case of a body
of moderate dimensions under the influence of terrestrial

gravity.

(2) A homogeneous isotropic body acted on by any distribu

tion of gravitating matter, and either equilibrated at rest by
the aid of surface-tractions if the attracting forces do not of

themselves balance on it; or fulfilling the conditions of in

ternal equilibrium by the balancing, according to D Alembert s

principle ( 264) of the reactions against acceleration of all

parts of its mass and the forces of attraction to which it is

subjected, when the circumstances are such that no accele

ration of rotation has to be taken into account. To this case

belongs the problem, solved below, of finding the tidal deforma

tion of the solid Earth, supposed of uniform specific gravity and

rigidity throughout, produced by the tide-generating influence

of the Moon and Sun.

(3) A uniform body strained by centrifugal force due to

uniform rotation round a fixed axis.

But it does not include a solid with any arbitrary non-

uniform distribution of specific gravity subjected to any of

those influences; nor generally a piece of magnetized steel

subjected to magnetic attraction
;
nor even a uniform body

fulfilling the conditions of internal equilibrium under the in

fluence of reactions against acceleration round a fixed axis

produced by forces applied to its surface.

Xdx+Ydy + Zdz is or is not a complete differential according as p is or is not a

function of the potential; that is to say, according as the density of the body is

or is not uniform over the equipotential surfaces for the distribution of force to

which (P, Q, R) belongs. Thus the condition of the text, if the system of force

is conservative, is satisfied when the body is homogeneous. But it is satisfied

whether the system be conservative or not if the density is so distributed, that,

were the body to lose its rigidity, and become an incompressible liquid held in a

closed rigid vessel, it would ( 755) be in equilibrium.
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We have, according to the present assumption, reduced to
case of no

dW dW dW _ bodily force.

, =
JL, -, =i, , Z ............. ...... (4),dx dy dz v h

dX dY dZ
which give -= + -r + - = y* Jr.

dx dy dz

Hence, for &quot;B as in 730 (a) for 8,

(?&amp;gt;i

+ )A
2N
s + v

2

Jr=o,

which is satisfied by the assumption

m + n

Next, introducing these assumptions in (1) of 732, we see that

these equations are finally satisfied by values for
v

a, 7?,
v

y,

assumed as follows :

~~m + ndx m + ndy ^
~
m + n dz I

(6).

where & is any function satisfying \7
2
3- = W.

Further, we may remark that if W be a spherical harmonic

[App. B. (a)],
a supposition including, as we shall see later,

the most important applications to natural problems, we have at

once, from App. B. (12), an integral of the equation for 3, as

follows :

2 (*2i + oj

where the suffix is applied to W to denote that its degree is i.

734. The general problem of 696 being now reduced to problem of

the case in which no force acts on the interior substance, it no
9
force

th

becomes this, in mathematical language : To find a, ft, 7, three

functions of (x, y, z) which satisfy the equations

dz
a d2

a \ d fd-j. d/3 dy

dy
2

dz*- ) dx \dx dy dz

/d*
f J
\d

(d*(B d*/3 d 2

/B\ d (d* dp dy\ An ~T^ +T^ + TS +^-l--7- + &quot;7+-7^
=

\aar dy dz* J dy \dx dy dz)
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&amp;gt;

696
1

w
1

ith
f ^or a^ Pomts f space occupied by the body, and the proper

e(luations for all points of the boundary to express one or other
surface: or any sufficient combination of the two surface conditions

indicated in 696. When these conditions are that the

surface displacements are given, the equations expressing them

are of course merely the assignment of arbitrary values to

a, ft, 7 for every point of the bounding surface. On the other

hand, when force is arbitrarily applied in a fully specified

manner over the whole surface, subject only to the conditions

of equilibrium of forces on the body supposed rigid ( 564), in

its actual strained state, and the problem is to find how the

body yields both at its surface and through its interior, the

conditions are as follows : Let dl denote an infinitesimal

element of the surface
;
and F, G, H functions of position on

the surface, expressing the components of the applied traction.

These functions are quite arbitrary, subject only to the follow

ing conditions, being the equations [
551 (a), (&)] of equili

brium of a rigid body :

= 0, Sf(Fz-Hx)dn = 0,!J(Gx-Fy)dn=Q\
{

&amp;gt;

surface-

are
C

subject. and the strain experienced by the body must be such as to

E uatonsof
satisfy f r every point of the surface the following equations;

dy [da dB\\ fdy

which we find by (1) of 662, with (6) of 670, witji (5) of 693,

and (5) of 698 ; /, g, h being now taken to denote the direc

tion-cosines of the normal to the bounding surface at (#, y, z).

Problem of 735. The solution of this problem for the spherical shell

for
9
s

6

phericai ( 696), found by aid of Laplace s spherical harmonic analysis,

was first given by Lame in a paper published in Liouvilles

Journal for 1854. It becomes much simplified
1

by the plan

1
&quot;Dynamical Problems regarding Elastic Spheroidal Shells, and Spheroids

of Incompressible Liquid.&quot; W.Thomson. Phil. Trans., 1862.
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we follow of adhering to algebraic notation and symmetrical Problem of

formulae [App. B. (l)-(24)], until convenient practical expan- LJiLi

sions of the harmonic functions, whether in algebraic or trigono

metrical forms, are sought [App. B. (25)-(41), (56)-(66)].

(a) Using for brevity the same notation 8 and \7
a
as hitherto

[
698 (8) (9)],

we find, from (1) of 734, by the process (a) of

(b) Now let the actual values of 8 over any two concentric Dilatation

spherical surfaces of radii a and a be expanded, by (52) of pressibie in

App. B., in series of surface harmonics, S
,
S

1 ,
Sa) etc., and series^

6 &quot;

nr ci ii i spherical
O

,
O i, o ,

etc.
;
so that when harmonics.

^^4-^4-^4- V

i / c\ Q/ o/ . Cr/
.^

i

Then, throughout the intermediate space, we must have

a (
- &quot;*

&amp;gt;

For
(i)

this series converges for all values of r intermediate

between a and a
,
as we see by supposing a to be the less of the

two, and writing it thus :

8 = iSi+ S8_ f_. ........................... (6)
o o

where 8
t , _,_! are solid harmonics of degrees i and -i- I given

by the following :

w -v ,
, ^=

LY&quot;
1 W a -

-^&quot;i.V&quot;

1^

For very great values of i these become sensibly

8.-5.Q
, and 8^, =^^) &quot;,

and therefore, as each of the series (4) is necessarily convergent,

the two series into which in (6) the expansion (5) is divided,

ultimately converge more rapidly than the geometrical series

ry /ry+i
/ry /a

/y+i
/
tt y /v:+3

)- u) w &quot;*(,) (7) fc)

respectively.
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Dilatation

proved ex

pressible in

convergent
series of

spherical
harmonics.

General

pansibility
in solid
harmonics.

Displace
ment deter
mined on
temporary
supposition
that dilata
tion is

known.

Again (ii) the expression (5) agrees with (4) at the boundary

of the space referred to (the two concentric spherical surfaces).

And (iii)
it satisfies V 2

S = throughout the space.

Hence (iv) no function differing in value from that given by

(5), for any point of the space between the spherical surfaces, can

[App. A.
(e)] satisfy the conditions (iii)

and (iv) to which 8 is

subject.

In words, this conclusion is that

736. Any function, B, of x, y, z, which satisfies the equation

V
L&amp;gt;

3 = for any point of the space between two concentric

spherical surfaces, may be expanded into the sum of two series

of complete spherical barmonies [App. B. (c)] of positive and

of negative degrees respectively, which converge for all points

of that space.

(c)
We may now write (6), for brevity, thus

8=_|8, (&amp;lt;),

where
S&amp;lt;,

a complete harmonic of any positive or negative degree,

i, is to be determined ultimately to fulfil the actual conditions of

the problem. But first supposing it known, we find a, (3, y as in

730 (d), except that now we take advantage of the formulae

appropriate for spherical harmonics instead of proceeding by

triple integration. Thus, by (1) and (7),
we have

_2
rt

m
&amp;lt;*

d$t .

V ft *t ~jn dx

and therefore, as
y-

is a harmonic of degree i - 1, by taking, in

App. B. (12), n=i-l and m=2, we see that the complete

solution of this equation, regarded as an equation for a, is

mr~ _ 1 c?8i

2n 2i+ 1 dx

where u denotes any solution whatever of the equation ^~u = 0.

Similarly, if v and w denote any functions such that ^
2v = and

^
2W = 0, we have

mr2

^ I
&amp;lt;A and = w _ mr &quot;

^
1

*.
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(d) Now, in order that (1) may be satisfied, 8
i
must be so complete

,
,

,
, , i , harmonic

related to u
} v, w that

soiutipn of

equations
fjn fJfi /7V of interior

+
(W + a2 = s =

28&amp;gt;&amp;gt;
equilibrium.

dx dy dz

Hence, by differentiating the expressions just found for a, /5, y,

and attending to the formula

d ( 2 dAX d / 2 d&amp;lt;f&amp;gt;\

d /
2 d$\ ( d d d\

/
y.*

__IL! \ ^ I
rp*

__!_*
J
^ / ^ L?

J
2

(
X 1- y \-Z I CD.-

dx\ dx) dy\ dy J dz\ dz J \ dx u
dy dz)

^ being any homogeneous function of degree i, we find

_
du dv dw m _ i ~

This gives

du dv dw (2i+ l)n+im ~
,p.

If, therefore, 2* S^, ^^f
be the harmonic expansions (^ 736)

of w, v, w we must have

lu
i+l

dv
i+l

dwi+l\

dx dy dz )

TJVing this, with i changed into i - 1, in the preceding expressions

for a, /?, y, we have finally, as the spherical harmonic solution

of (1), 734,

i=oo r mr*

a= 5 \
ui~ ~% / ffT T\ T^~~

d /du. dv
t

d &quot;

dx\dx
+

~dy

+
dz

y=

d /du
(

dv
i

dw
i

dy \dx dy

/du. dv
i

o

where u
t ,
v
it
w

i
denote any spherical harmonics of degree i.

For the analytical investigations that follow, it is convenient

to introduce the following abbreviations :

m

and
dw.

...(12),

...(13),
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Complete
harmonic
solution of

equations
of interior

equilibrium.

Solid sphere
with surface

displace
ments given

Shell with
given dis

placements
of its outer
and inner
surfaces.

so that (11) becomes

ft&quot;

?
(,-*&amp;gt;&amp;gt;%__\ dx

vt .(H).

(e)
It is important to remark that the addition to u, v, w re

spectively of terms
d&amp;lt;f&amp;gt;/dx, d&amp;lt;j&amp;gt;/dy, d&amp;lt;$&amp;gt;jdz

(&amp;lt; being any function

satisfying ^
2

&amp;lt;=0),
does no^ alter the equation (10). This

allows us at once to write down as follows the solution of the

problem for the solid sphere with surface displacement given.

Let a be the radius of the sphere, and let the arbitrarily given

values of the three components of displacement for every point

of the surface be expressed [App. B. (52)] by series of surface

harmonics, 2U
4 ,

SJ9i} 2^? respectively. The solution is

A, - m (a
2

r
2

)

dx

,=o dy

y= - +
m (a

2 - r
2

)

where _d(A i
ri

) d(Bi
r
i

)

dx dy dz

(15).

For this is what (11) becomes if we take

m d,.

-&amp;lt;)

and it makes

,= etc., etc.;

(16).

This result might have been obtained, of course, by a purely

analytical process; and we shall fall on it again as a particular

case of the following:

(/) The problem for a shell with displacements given arbitrarily

for all points of each of its concentric spherical bounding sur

faces is much more complicated, and we shall find a purely

analytical process the most convenient for getting to its solution.
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Let a and a be the radii of the outer and inner spherical surfaces, Shell with

and let 2,A iy etc., 24 i} etc., be the series of surface harmonics placements

expressing [App. B. (52)] the arbitrarily given components of and Inner
1

&quot;

displacement over them; so that our surface conditions are

a =
24,]

a -54
,.] ]

/?=2&amp;lt; 1 when r = a\ and (3
= 2,B t

1 when r = a L.(17).

Using the abbreviated .notation (12) and (13), selecting from (14)
all terms of a which become surface harmonics of order i for a

constant value of r, and equating to the proper harmonic terms

of (17), we have

Remarking that r {

u^ Ti+lu_ t_^ r {

d\l/i+l/dx, and ^ l

d^r_ tjdx are

each of them independent of r, we have immediately from (18)
the following two equations towards determining these four

functions :

and v,

(19) .

a! (r-

These, and the symmetrical equations relative to y and
, suffice,

with (13), for the determination of u
i9
v

t ,
w

t
for every value,

positive and negative, of i. The most convenient order of pro
cedure is first to find equations for the determination of the

\jr

functions by the elimination of the u, v, w, thus: From (19)
we have

^(o^^-a^r-&quot;

and symmetrical equations for v and w. Or if, for brevity, we

put

(20)

VOL. II. 19
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Shell with
given dis

placements
of its outer
and inner
surfaces.

and

a ~
a

v. = etc., v_ t._!
= etc.

,
w

t

= etc.
,

= etc.

(23).

Performing the proper differentiations and summations to elimi

nate the u, v, w functions between these (23) and (13),
and

taking advantage of the properties of the
\j/ functions, that

dx

dx dy dz

we find

and
i i\ i

iT&quot;&quot;

&quot;1
) d(18 f~*&quot;&quot; ) d((&jr~* )

ZE 5w da J

(24).

Changing i into i + 1 in the first of these, and into i- 1 in the

second, we have two equations for the two unknown quantities

\l/t
and \jf_t_i ,

which give

t
.+ (2i+3)(i + l)Jt_ &amp;lt;

@/

.
&amp;lt;

_ 1
r2H

l-(2t+3)(2t-l)(i + l)t^,_A+1 ,

(25)j

(2i
-

1) iB.^? +
-&amp;lt;-i

- -1=
l-(2i + 3)(2i- 1) (i

+ 1) ijaL^+fJ

where, for brevity,

@--^,
(26).

The functions
\j/t

and ^^^ for every value of i being thus given,

(23) and (14) complete the solution of the problem.
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surfaces -

(g) The composition of this solution ought to be carefully shell with

studied. Thus separating for simplicity the part due to the placements

terms A
ti etc., A t , etc., of the single order i, in the surface data,

we see that were there no such terms of other orders, all the

functions would vanish except if/._ l} \f/i+l , \j/_ lt \}/_ i_ a . These

would give ut_ at ut ,
u
i+2 , w_f+1 , u_._ lt and u_ {_3 }

with symmetri
cal expressions for the v and w functions; of which the composi
tion will be best studied by first writing them out in full, explicitly
in terms of &,, $., &amp;lt;& & &amp;lt;& iy and the derived solid har

monics ;_! and _,-_ 2

737. When, instead of surface displacements, the force Surface

applied over the surface is given, the problem, whether for the
tractions

solid sphere or the shell, is longer because of the preliminary
process (h) required to express the components of traction on

any spherical surface concentric with the given sphere or shell,
in proper harmonic forms

;
and its solution is more complicated,

because of the new solid harmonic function &amp;lt;.

+1 [(32) below]
which, besides the function ^.^ employed above, we are

obliged to introduce in this preliminary process.

(A) Taking F, 6f, H to denote the components of the traction

on the spherical surface of any radius r, having its centre at the

origin of co-ordinates, instead of merely for the boundary of the

body as supposed formerly in 734 (3), we have still the same
formulae : but in them we have now to p\itf= x/r, g = y/r, h z/r.

By grouping their terms conveniently, we may, with the notation

(28), put them into the following abbreviated forms :

/.-)
~\

\~* )i

Component
tractions

911

any spheri
cal surface
concentric
with origin.

where = o.x -t (3y + yz \

and r = x *_ + *.+ 9
d

\

; (28)

dr dx y
dy

Z

dz)

BO that /r is the radial component of the displacement at any
192
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Component
tractions on
any spheri
cal surface
concentric
with origin.

point, and d/dr prefixed to any function of x, y, 2 denotes the

rate of its variation per unit of length in the radial direction.

It is interesting to remark that if we denote by R the radial

component of the traction, we find, from (27) and (28),

RF+G H =
(
m-n)8-\ ......(28 ).r r T r \ar rj

(k) To reduce these expressions to surface harmonics, let us

consider homogeneous terms of degree i of the complete solution

(14), which we shall denote* by a,, /?,, y &amp;lt;5

and let S
(_ 1} i+l

denote the corresponding terms of the other functions.

we have

Thus

= 2
{(m

-
n) 8...S + n (i

-
1) r&amp;lt;

+

(29).

(I)
The second of the three terms of order i in these equa

tions, when the general solution of (d) is used, become at the

boundary each explicitly the sum of two surface harmonics of

orders i and i 2 respectively. To bring the other parts of the

expressions to similar forms, it is convenient that we should

first express f+1
in terms of the general solution (14) of (d),

by selecting the terms of algebraic degree i. Thus we have

mr
.(30),

and symmetrical expressions for
/?,.

and yi} from which we find

t , 2 _ 1)+(1)
.

Hence, by the proper formulae [see (36) below] for reduction to

harmonics,

* The suffixes now introduced have reference solely to the algebraic degree,

positive or negative, of the functions, whether harmonic or not, of the symbols-

to which they are applied.
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wnere Component
tractions on

with origin

and (as before assumed in 12)

du, &, + *&quot;&amp;gt;

..................... {33) .

dx dy dz

Also, by (10) of 736, or directly from (30) by differentiation,

we have

Substituting these expressions for 8
{_ lt

a
f ,

and
i+l

in (29), we
find

^-(2t-l)n1 ^. t
n

d&amp;lt;j&amp;gt; i+l\ .

Jarmoni-

T&amp;gt;^T(irT)wI ete 2^+1 dx )&quot; Passed.

This is reduced to the required harmonic form by the obviously

proper formula

Thus, and dealing similarly with the expressions for Gr and Hr,
we have, finally,

where [as above (12)], ^.-t
(2f

_ 1)n

&quot;

(&amp;lt;

_1)m
j

a.d now, further, *
&amp;lt;=

J*-!-(-
(2z + 1) [(2t

-
1) tt + (*

-
1) m] J

(m) To express the surface conditions by harmonic equations Prescribed

.
surface con-

for the shell bounded by the concentric spherical surfaces, r = a,
ditions put

r = a
,

let us suppose the superficial values of
F&amp;gt; G, H to be monies.

given as follows :

when

and when

r = a, F=^A&amp;lt;,
= 2^, 2f=2Ct }

&amp;gt;

r =
a&quot;,
F= S4 ft

^ = 2^, J5T=
26&quot;, J
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Prescribed
surface con
ditions put
into har
monics.

B
f ,

C
f , A\, B ^ C\ denote surface harmonics of

Equations of
equilibrium
to which the
surface
tractions
are subject.

where Ai,

order i.

To apply to this harmonic development the conditions 734

(2) to which the surface traction is subject, let a?dm and a ^d-m

be elements of the outer and inner spherical surfaces subtending
at the centre

( 468) a common infinitesimal solid angle o?*zzr:

and let jjdw denote integration over the whole spherical surface

of unit radius. Equations (2) become

//&amp;lt;te2 (a
2.4

&amp;lt;

- a 2 J ,.)=(), etc.; and jydra[yS(a
2C ,--a

/2
(7

&amp;lt;) -zZ(a
2
A--a&quot;

2

i)]=0, etc. (40).

JSTow App. B. (16) shows that, of the first three of these, all

terms except the first (those in which t = 0) vanishes; and that

of the second three all the terms except the second (thosa for

which i=l) vanish because x, y, z are harmonics ot order 1.

imposedZ
9 Thus the first three become

the other
wise arbi

trary har
monic data
of surface

tractions,

equilibrium.
\ /

^(a-A -a 2

A^ } etc.;

which, as A
,
A

Q , etc., are constants, require simply that

The second three are equivalent to

where ff
a

is a homogeneous function of x, y, z of the second

degree. For [App. B. (a)] rA^ rA\, etc., are linear functions

of x, y, z. If therefore (A} x), (A, y)...(B} a;)...
denote nine

constants, we have

r (a
2

A,
-

a&quot;A
t )
= (A, x)x + (A, y)y+(A,z) z,

r (a?B,
- a 9

^) =
(5, x) x + (B, y}y + (B, z) z,

r (a
2

C,
- a 2

C\) = (C, x) x+(C,y)y+ (C, z) z.

Using these in the second three of (40) of which, as remarked

above, all terms except those for which i = 1 disappear, and re

marking that yz, zx, xy are harmonics, and therefore (App.

B-
(
16)] //yarfw

= 0, ffzxdw = 0, ffxydm = 0,

we have ((7, y) ffy dm -
(B, z) ffz*dn = : etc.

From these, because ffx
adw = jjy

2d^ = ffz
2

d&,

it follows that

((7, y)
=

(B, z), (A, z)
=

(C, x), (B, x)
=

(A, y),

which prove (42).
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(n) The terms of algebraic degree i, exhibited in the pre

ceding expressions (37) for Fr, Gr, ffr, become, at either of the

concentric spherical surfaces, sums of surface harmonics of

orders i and i - 2 when i is positive, and of orders i I and

i 3 when i is negative. Hence, selecting all the terms Surface

which lead to surface harmonics of order i, and equating to the expressed^

proper terms of the data (39), we have
equations.

(43)

_ J.4,-
when r= a 1~

[A i when r=a f

and symmetrical equations relative to y and z.

(6) These equations are to be treated precisely on the same

plan as formerly were (18). Thus after finding u
t
and u_t_ lt

we perform on utj vit wf
the operations of (33), and on u_ {_ l9

v
&amp;lt;_i&amp;gt;

w-t ,
those of (32), and so arrive at two equations Surface~

. .

~
. . . tractions

which involve as unknown quantities only \b
t , \l/_ t , d&amp;gt;_

and given : gene-
._.., T - -ii ral solution

taking the corresponding expressions for u
t_a , u_i+l ,

and apply- for spherical

ing (32) to u
t_a , Vt_2 ,

w
t_ a ,

and (33) to w_i+1 , v_i+l , w_i+l ,
we

sb

similarly obtain two equations between ^_,, \j/i_ l ,
and

\j/_ t . Thus

we have in all four simple algebraic equations between
i/^_j ,

ij/_{ , ^&amp;gt;f_ l5 &amp;lt;^_i, by which we find these four unknown functions :

and the u, v, w functions having been already explicitly ex

pressed in terms of them, we thus have, in terms of the data of

the problem, every unknown function that appears in (14) its

solution.

(p) The case of the solid sphere is of course fallen on from for solid

the more general problem of the shell, by putting a = 0. But

if we begin with only contemplating it, we need not introduce

any solid harmonics of negative degree (since every harmonic of

negative degree becomes infinite at the centre, and therefore is

inadmissible in the expression of effects produced throughout a

solid sphere by action at its surface) ;
and (43), and all the

formuliie described as deducible from it, become much shortened

when we thus confine ourselves to this case. Thus, instead of

(43), we now have simply

when r=a
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Surface
tractions

given: gene
ral solution ;

for solid

sphere.

Hence, attending [as formerly in (/)] to the property of a

homogeneous function H
j}

of any order j, that r~*H
}
is indepen

dent of r, and depends only on the ratios x/r t ylr, z/r ;
we have

for all values of x, y, z,

(45).

From this and the symmetrical equations for v and w, we have

by (33),

and by (32)

Eliminating, by this, &amp;lt;

i+1
from (45), and introducing the abbre

viated notation, fl^ [(50) below], we find

and (43) gives

.
I

i-1
&quot;

( h

where vj,
__

and
t+l dx

(50).

dy dz

/. and u
t , (14) is the complete solu-With these expressions for

tion of the problem.

(q) The composition and character of this solution are made

manifest by writing out in full the terms in it which depend on

harmonics of a single order, i, in the surface data. Thus if

the components of the surface traction are simply A
t , B^ C

it
all

the ^ functions except ty
t_ }

and all the &amp;lt; functions except

$
&amp;lt;&amp;gt;fl

vanish. Hence (48) shows that all the u functions except

u
t_ 2

and u
t
vanish : and for these it gives

dx
(51).
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Using this in (14) and for^ and M
i substituting their values by

(38), we have, explicitly expressed in terms of the data, and the

solid harmonics ^f
t.u ^i+i, derived from the data according to

the formulae (50), the final solution of the problem as follows :

1

*-* *
(2i

s
+l)m-(2i-l)n dx

(i+2)m-(2i-l}n
*

i-l)n (2i+l)dx

with symmetrical expressions for /3 and y.

(r) The case of i = 1 is interesting, inasmuch as it seems at Case of

first sight to make the second part of the expression (52) for a

infinite because of the divisor i l. But the terms within the

brackets
[ ]

vanish for i = 1, owing to the relations (42) proved

above, which, for the solid sphere, become

_

ff
a denoting any homogeneous function of x, y, z of the second out strain,

degree. The verification of this presents no difficulty, and we fnSed in

leave it as an exercise to the student. The true interpretation fSf r&quot;

of the g appearing thus in the expressions for a, /?, y is clearly

that they are indeterminate : and that they ought to be so, we see

by remarking that an infinitesimal rotation round any diameter for09

without strain may be superimposed on any solution without

violating the conditions of the problem : in other words
( 89, 95),

may be added to the expressions for a, ft, y in any solution, and
the result will still be a solution.

But though a, /?, y are indeterminate, (50) gives \}/
and

&amp;lt;j&amp;gt;a

determinately. The student will find it a good and simple
exercise to verify that the determination of

\j/
and

&amp;lt;f&amp;gt;2
determines

the state of strain [homogeneous ( 155) of course in this case]

actually produced by the given surface traction.

738. A solid is said
( 730) to experience a plane strain, Plane strain

or to be strained in two dimensions, when it is strained in any
manner subject to the condition that the displacements are all

in a set of parallel planes, and are equal and parallel for all

points in any line perpendicular to these planes : and any one
of these planes may be called the plane of the strain. Thus,
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Plane strain in plane strain, all cylindrical surfaces perpendicular to the

plane of the strain remain cylindrical surfaces perpendicular
to the same plane, and nowhere experience stretching along the

generating lines.

The condition of plane strain expressed analytically, if we take

XOY for the plane, is that y must vanish, and that a and /? must

be functions of x and y, without z. Thus we see that

Only two independent variables enter into the analytical ex

pression of plane strain
;
and thus this case presents a class of

problems of peculiar simplicity. For instance, if an infinitely

long solid or hollow circular cylinder is the
&quot;given

solid&quot; of

Problem for 696, and if the bodily force (if any) and the surface action

wider piane consist of forces and tractions everywhere perpendicular to its

stram
axis, and equal and parallel at all points of any line parallel

to its axis, we have, whether surface displacement or surface

traction be given, problems precisely analogous to those of

735, 736, but much simpler, and obviously of very great

practical importance in the engineering of long straight tubes

under strain.

739. It is interesting to remark, that in these cylindrical

problems, instead of surface harmonics of successive orders

solved in 1, 2, 3, etc., which are [App. B. (&)] functions of spherical

pXne
1

surface co-ordinates (as, for instance, latitude and longitude on
harmonics.&quot;

ft g]^^ we nave s imple harmonic functions
( 54, 75) of the

Plane same degrees, of the angle between two planes through the

iSums axis, and of its successive multiples: and instead of solid
defined.

harmonic functions [App. B. (a) and (6)], we have what we

may call plane harmonic functions, being the algebraic functions

of two variables (x, y}, which we find by expanding cosiO and

sin i# in powers of sines or cosines of 0, taking

cos 6 = -77-2
-

o^ ,
and sin 6

and multiplying the result by (x* + 2/

2

) .

A plane harmonic function is of course the particular case of a

solid harmonic [App. B. (a) and (6)]
in which z does not appear;
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that is to say, it is any homogeneous function, F, of x and y }
Plane
harmonic

which satisfies the equation functions
defined.

+ = 0, or, as we may write it for brevity, ^
2 V= 0.

dx- dy
2

And, as we have seen
[

707 (23)], the most general expression

for a plane harmonic of degree i (positive or negative, integral

or fractional) is

where v stands for J-l, or in polar co-ordinates
j-

(1).

(A cos iO + B sin iO) r*

The equations of internal equilibrium [698 (6)] with no bodily

force (that is, X= and Y= 0) become, for the case of plane strain,

/d
2a d2

a\ d /da c

n I TT-S + -r-z I +w (
+ ~

7av *
i

(tf$ d p\ d fda dp\ n i

n
( -=-? + T-? 1 +m -=-

(
-=- + -.

-
)

=
\dx

2

dif ) dy\dx dy J j

The plane harmonic solution of these, found by precisely the

same process as 5 735, 736 (a)...(e\ but for only two variables ,S plane
strain solved

instead of three, is in terms of

plane nar-

m
dx

monics&amp;gt;

n ^ f m a^i-il I H\B ^t\v. f
\ Y \*)i

1

*

2(i l)(2^+m) dy J

where *Ai-i
=

~&amp;gt;

*
&quot;*&quot; ~r~*dx dy

and u
i} Vi denote any two plane harmonics of degree i, so that

j/^j is a plane harmonic of degree il. Of course i may be

positive or negative, integral or fractional.

This solution may be reduced to polar co-ordinates with advan

tage for many applications, by putting

x = r cos 0, y = r sin 0, \

and taking ui =r*(Ai ooai0+A i mn.i$){ (4);

v&amp;lt;

= r* (Bt
cos iO +B

i
sin iO)\

which give

cos * &quot; + ~ sn
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and

a=Zr

Problem The student will find it a srood exercise to work out in full, to
for cylinders .

under plane explicit expressions for the displacement of any point of the solid,
strain solved

J
\

in terms of in the cylindrical problems corresponding to the spherical pro-

on~ics

ar &quot;

blems of 735 (/), and of 736 (h)...(r). The process (I)
of

the latter may be worked through in the symmetrical algebraic

form, as an illustration of the plan we have followed in dealing

with spherical harmonics
;
but the result corresponding to (37)

of 737 may be obtained more readily, and in a simpler form,

by immediately putting (29) of 737 into polar co-ordinates, as

(4), (5), (6) of 739. We intend to use, and to illustrate, these

solutions under &quot;Properties
of Matter.&quot;

740. In our sections on hydrostatics, the problem of finding

the deformation produced in a spheroid of incompressible liquid

by a given disturbing force will be solved
;
and then we shall

consider the application of the preceding result
[ 736 (51)]

for an elastic solid sphere to the theory of the tides and the

rigidity of the earth. This proposed application, however,

reminds us of a general remark of great practical importance,

with which we shall leave elastic solids for the present.

Considering different elastic solids of similar substance and

Small similar shapes, we see that if by forces applied to them in any

stronger way they are similarly strained, the surface tractions in or

onesin
rge

across similarly situated elements of surface, whether of their

fotheir
lon

boundaries or of surfaces imagined as cutting through their

substances, must be equal, reckoned as usual per unit of area.

Hence; the force across, or in, any such, surface, being resolved

into components parallel to any directions
;
the whole amounts

of each such component for similar surfaces of the different

bodies are in proportion to the squares of their linear dimen

sions. Hence, if equilibrated similarly under the action of

gravity, or of their kinetic reactions ( 264) against equal

accelerations ( 28), the greater body would be more strained

than the less
;
as the amounts of gravity or of kinetic reaction

of similar portions of them are as tbe cubes of their linear

weights.
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dimensions. Definitively, the strains at similarly situated small

points of the bodies will be in simple proportion to their linear stronger

dimensions, and the displacements will be as the squares of onesin
rg

these lines, provided that there is no strain in any part of any to their

of them too great to allow the principle of superposition to hold

with sufficient exactness, and that no part is turned through
more than a very small angle relatively to any other part.

To illustrate by a single example, let us consider a uniform Example:

long, thin, round rod held horizontally by its middle. Let its rod hefd

i 1 i_ i_ * j M. j IT J 1 horizontally
substance be homogeneous, of density p, and Young s modulus, by its

M; and let its length, I, be p times its diameter. Then (as

the moment of inertia of a circular area of radius r round a

diameter is J?rr
4

) the flexural rigidity of the rod will
( 715)

be lM7r(l/2p)
4
,
which is equal to B/g in the notation of 610,

as B is there reckoned in kinetic or absolute measure
( 223)

instead of the gravitation measure in which we now, according

to engineers usage ( 220), reckon M. Also w = p7r(l/2p)*, and

therefore, for 617,

This, used in 617 (10), gives us
;

for the curvature at the

middle of the rod
;

the elongation and contraction where

greatest, that is, at the highest and lowest points of the normal

section through the middle point; and the droop of the ends;

the following expressions,

M M 8M

Thus, for a rod whose length is 200 times its diameter, if its

substance be iron or steel, for which p = 775, and M= 194 x 107

grammes per square centimetre, the maximum elongation and

contraction (being at the top and bottom of the middle section

where it is held) are each equal to 8x 10~6 x I, and the droop of

its ends to 2 x 1 0~
5 x I

2
. Thus a steel or iron wire, ten centi- stiffness cf

metres long, and half a millimetre in diameter, held hori- steel rod* of

zontally by its middle, would experience only 000008 as dimensions

maximum, elongation and contraction, and only *002 of a

centimetre of droop in its ends : a round steel rod, of half a

centimetre diameter, and one metre long, would experience
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stiffness of 00008 as maximum elongation and contraction, and *2 of a
uniform .

steel rods of centimetre of droop: a round steel rod, of ten centimetres
different
dimensions, diameter, and twenty metres long, need not be of remarkable

temper (see Vol. II., Properties of Matter) to bear being held by
the middle without taking a very sensible permanent set : and

it is probable that any temper of steel or iron except the softest

is strong enough in a round shaft forty metres long, if only twenty
centimetres in diameter, to allow it to be held by its middle,

drooping as it would to the extent of 320 centimetres at its

ends, without either bending it beyond elasticity ;
or breaking it,

(See Encyclopaedia Britannica, Article
&quot;Elasticity,&quot; 22.)

Transition 741. In passing from the dynamics of perfectly elastic solids

dynamics, to abstract hydrodynamics, or the dynamics of perfect fluids,

it is convenient and instructive to anticipate slightly some of

the views as to intermediate properties observed in real solids

and fluids, which, according to the general plan proposed

( 449) for our work, will be examined with more detail under

Properties of Matter.

imperfect- By induction from a great variety of observed phenomena,

elasticity we are compelled to conclude that no change of volume or of

shape can be produced in any kind of matter without dis

sipation of energy ( 275); so that if in any case there is a

return to the primitive configuration, some amount (however

small) of work is always required to compensate the energy

dissipated away, and restore the body to the same physical

and the same palpably kinetic condition as that in which it

was given. We have seen
( 672), by anticipating something

of thermodynamic principles, how such dissipation is inevitable,

even in dealing with the absolutely perfect elasticity of volume

presented by every fluid, and possibly by some solids, as, for

instance, homogeneous crystals. But in metals, glass, porcelain,

natural stones, wood, india-rubber, homogeneous jelly, silk

fibre, ivory, etc., a distinct frictional resistance* against every

change of shape is, as we shall see in Vol. IL, under Pro-

parties of Matter, demonstrated by many experiments, and is

found to depend on the speed with which the change of

* See Proceedings of the Royal Society, May 1865,
&quot; On the Viscosity and

Elasticity of Metals&quot; (W. Thomson).
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shape is made. A very remarkable and obvious proof of viscosity of

frictional resistance to change of shape in ordinary solids

is afforded by the gradual, more or less rapid, subsidence of

vibrations of elastic solids; marvellously rapid in india-rubber,

and even in homogeneous jelly; less rapid in glass and metal

springs, but still demonstrably much more rapid than can be

accounted for by the resistance of the air. This molecular

friction in elastic solids may be properly called viscosity of

solids, because, as being an internal resistance to change of

shape depending on the rapidity of the change, it must be

classed with fluid molecular friction, which by general con

sent is called viscosity of fluids. But, at the same time, we viscosity of

feel bound to remark that the word viscosity, as used hitherto

by the best writers, when solids or heterogeneous semisolid-

semifluid masses are referred to, has not been distinctly applied
to molecular friction, especially not to the molecular friction of

a highly elastic solid within its limits of high elasticity, but

has rather been employed to designate a property of slow, con

tinual yielding through very great, or altogether unlimited,

extent of change of shape, under the action of continued stress.

It is in this sense that Forbes, for instance, has used the word

in stating that &quot; Viscous Theory of Glacial Motion&quot; which he Forbes

demonstrated by his grand observations on glaciers. As, how- Theory of

i i 11 Glacial

ever, he, and many other writers after him, have used the words Motion.&quot;

plasticity and plastic, both with reference to homogeneous
solids (such as wax or pitch, even though also brittle; soft

metals
; etc.), and to heterogeneous semisolid-semifluid masses

(as mud, moist earth, mortar, glacial ice, etc.), to designate the

property*, common to all those cases, of experiencing under

continued stress either quite continued and unlimited change
of shape, or gradually very great change at a diminishing

* Some confusion of ideas might have been avoided on the part of writers who
have professedly objected to Forbes theory while really objecting only (and we
believe groundlessly) to his usage of the word viscosity, if they had paused to con
sider that no one physical explanation can hold for those several cases

;
and that

Forbes theory is merely the proof by observation that glaciers have the property
which mud (heterogeneous), mortar (heterogeneous), pitch (homogeneous), water

(homogeneous), all have of changing shape indefinitely and continuously under
the action of continued stress.
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Plasticity (asymptotic) rate through infinite time
;
and as the use of the

terra plasticity implies no more than does viscosity any physical

theory or explanation of the property, the word viscosity is

without inconvenience left available for the definition we have

given of it above.

Perfect and 742. A perfect fluid, or (as we shall call it) a fluid, is an
unlimited n x- vi -j ^ i_ j M.
plasticity unrealizable conception, like a rigid, or a smooth, body: it is
unopposed , , ni . i i i* i i

by internal denned as a body incapable of resisting a change of shape : and

character- therefore incapable of experiencing distorting or tangential

fluid if
erfect stress

( 669). Hence its pressure on any surface, whether

h
b
drod

ct
-

^ a so^ or ^ a contiguous portion of the fluid, is at every
namics.

point perpendicular to the surface. In equilibrium, all common

liquids and gaseous fluids fulfil the definition. But there is

finite resistance, of the nature of friction, opposing change of

shape at a finite rate
;
and therefore, while a fluid is changing

shape, it exerts tangential force on every surface other than

normal planes of the stress ( 664) required to keep this change

of shape going on. Hence; although the hydrostatical results,

to which we immediately proceed, are verified in practice; in

treating of hydrokinetics, in a subsequent chapter, we shall be

obliged to introduce the consideration of fluid friction, except

in cases where the circumstances are such as to render its

effects insensible.

Fluid 743. With reference to a fluid the pressure at any point in
pressure. . . ,

,
, . -,

any direction is an expression used to denote the average pres

sure per unit of area on a plane surface imagined as containing

the point, and perpendicular to the direction in question, when

the area of that surface is indefinitely diminished.

744. At any point in a fluid at rest the pressure is the

same in all directions : and, if no external forces act, the

pressure is the same at every point. For the proof of these

and most of the following propositions, we imagine, according

to 564, a definite portion of the fluid to become solid, without

changing its mass, form, or dimensions.

Suppose the fluid to be contained in a closed vessel, the

pressure within depending on the pressure exerted on it by the

vessel, and not on any external force such as gravity.
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745. The resultant of the fluid pressures on the elements Fluid pres-

of any portion of a spherical surface must, like each of its equ
,1 1,1 c ,1 i TT directions.

components, pass through the centre of the sphere. Hence,
if we suppose ( 564) a portion of the fluid in the form of

a plano-convex lens to be solidified, the resultant pressure on

the plane side must pass through the centre of the sphere; and,

therefore, being perpendicular to the plane, must pass through
the centre of the circular area. From this it is obvious that

the pressure is the same at all points of any plane in the fluid.

Hence, by 562, the resultant pressure on any plane surface

passes through its centre of inertia.

Next, imagine a triangular prism of the fluid, with ends

perpendicular to its faces, to be solidified. The resultant

pressures on its ends act in the line joining the centres of

inertia of their areas, and are equal ( 552) since the re

sultant pressures on the sides are in directions perpendicular
to this line. Hence the pressure is the same in all parallel

planes.

But the centres of inertia of the three faces, and the resultant

pressures applied there, lie in a triangular section parallel to

the ends. The pressures act at the middle points of the sides

of this triangle, and perpendicularly to them, so that their

directions meet in a point. And, as they are in equilibrium,

they must be, by 559, e, proportional to the respective sides of

the triangle; that is, to the breadths, or areas, of the faces of

the prism. Thus the resultant pressures on the faces must be

proportional to the areas of the faces, and therefore the pressure
is equal in any two planes which meet.

Collecting our results, we see that the pressure is the same

at all points, and in all directions, throughout the fluid mass.

746. One immediate application of this result gives us a Application

simple though indirect proof of the second theorem in 559, e, solids?
108 f

for we have only to suppose the polyhedron to be a solidified

portion of a mass of fluid in equilibrium under pressures only.

The resultant pressure on each side will then be proportional

to its area, and, by 562, will act at its centre of inertia; which,

in this case, is the Centre of Pressure.

VOL. ii. 20
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Application 747. Another proof of the equality of pressure throughout

cipieof a mass of fluid, uninfluenced by other external force than the

pressure of the containing vessel, is easily furnished by the

energy criterion of equilibrium, 289 ; but, to avoid complica-

proofby tion, we will consider the fluid to be incompressible. Suppose

the?(fuaiity a number of pistons fitted into cylinders inserted in the sides

pressure of the closed vessel containing the fluid. Then, if A be the

directions, area of one of these pistons, p the average pressure on it, x the

distance through which it is pressed, in or out
;

the energy

criterion is that no work shall be done on the whole, i.e. that

=
0,

as much work being restored by the pistons which are forced

out, as is done by those forced in. Also, since the fluid is in

compressible, it must have gained as much space by forcing

out some of the pistons as it lost by the intrusion of the others.

This gives
A

l
x
l+Aft+...= 2(Ax) = Q.

The last is the only condition to which x
t ,
x

z , etc., in the first

equation, are subject; and therefore the first can only be

satisfied if

that is, if the pressure be the same on each piston. Upon this

property depends the action of Bramah s Hydrostatic Press.

If the fluid be compressible, the work expended in compressing
it from volume V to V 8V, at mean pressure p, is p&V.

If in this case we assume the pressure to be the same through

out, we obtain a result consistent with the energy criterion.

The work done on the fluid is 2 (Apx), that is, in consequence
of the assumption, p*% (Ax).

But this is equal to p$ V, for, evidently, 2 (Ax)
= 8 V.

Fluid pres- 748. When forces, such as gravity, act from external matter

pending on upon the substance of the fluid, either in proportion to the

forces. density of its own substance in its different parts, or in propor
tion to the density of electricity, or of magnetic polarity, or of

any other conceivable accidental property of it, the pressure will
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still be the same in all directions at any one point, but will Fluid pres-

now vary continuously from point to point. For the preceding pending on

demonstration
( 745) may still be applied by simply taking fore*

the dimensions of the prism small enough ;
since tke pressures

are as the squares of its linear dimensions, and the effects of

the applied forces such as gravity, as the cubes.

749. When forces act on the whole fluid, surfaces of equal Surfaces of

pressure, if they exist, must be at every point perpendicular sureareper-

to the direction of the resultant force. For, any prism of the to the lines

fluid so situated that the whole pressures on its ends are equal
must

( 552) experience from the applied forces no component
in the direction of its length; and, therefore, if the prism be

so small that from point to point of it the direction of the

resultant of the applied forces does not vary sensibly, this

direction must be perpendicular to the length of the prism.

From this it follows that whatever be the physical origin, and

the law, of the system of forces acting on the fluid, and whether

it be conservative or non-conservative, the fluid cannot be in

equilibrium unless the lines of force possess the geometrical

property of being at right angles to a series of surfaces.

750. Again, considering two surfaces of equal pressure in

finitely near one another, let the fluid between them be divided

into columns of equal transverse section, and having their

lengths perpendicular to the surfaces. The difference of pres

sures on the two ends being the same for each column, the

resultant applied forces on the fluid masses composing them

must be equal. Comparing this with 488, we see that if the

applied forces constitute a conservative system, the density

matter, or electricity, or whatever property of the substance

they depend on, must be equal throughout the layer onder

consideration. This is the celebrated hydrostatic proposition gervative
n~

that in a fluid at rest, surfaces of equal pressure are also surfaces

of equal density and of equal potential.

751. Hence, when gravity is the only external force con- Gravity the
J J

. only exter-

sidered, surfaces of equal pressure and equal density are (when nai force,

of moderate extent) horizontal planes. On this depends the

action of levels, syphons, barometers, etc.; also the separation

202
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Gravity the of liquids of different densities (which do not mix or combine
nai force, chemically) into horizontal strata, etc. etc. The free surface of

a liquid is exposed to the pressure of the atmosphere simply ;

and therefore, when in equilibrium, must be a surface of equal

pressure, and consequently level. In extensive sheets of water,

such as the American lakes, differences of atmospheric pressure,

even in moderately calm weather, often produce considerable

deviations from a truly level surface.

Rate of 752. The rate of increase of pressure per unit of length in

pressure, the direction of the resultant force, is equal to the intensity of

the force reckoned per unit of volume of the fluid. Let F be the

resultant force per unit of volume in one of the columns of 750;

p and p the pressures at the ends of the column, I its length,

S its section. We have, for the equilibrium of the column,

Hence the rate of increase of pressure per unit of length is F.

If the applied forces belong to a conservative system, for

which V and V are the values of the potential at the ends of

the column, we have
( 486)

V -V=-lFp,
where p is the density of the fluid. This gives

or dp pdV.

Hence in the case of gravity as the only impressed force the

rate of increase of pressure per unit of depth in the fluid is p,

in gravitation measure (usually employed in hydrostatics). In

kinetic or absolute measure
( 224) it is gp.

If the fluid be a gas, such as air, and be kept at a constant

temperature, we have p = cp, where c denotes a constant, the

reciprocal of H, the &quot;

height of the homogeneous atmosphere,&quot;

denned (753) below. Hence, in a calm atmosphere of uniform

temperature we have dp/p
= -cdV; and from this, by integra

tion, p = p e~
cr where p is the pressure at any particular level

(the sea-level, for instance) where we choose to reckon the

potential as zero.
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When the differences of level considered are infinitely small in Rate of

comparison with the earth s radius, as we may practically regard pressure,

them, in measuring the height of a mountain, or of a balloon, by
the barometer, the force of gravity is constant, and therefore

differences of potential (force being reckoned in units of weight)

are simply equal to differences of level. Hence if x denote

height of the level of pressure p above that of p ,
we have, in

the preceding formulse, F= x, and therefore p p &quot;**. That is

to say

753. If the air be at a constant temperature, the pressure Pressure
,. . . , . , , . , . in a calm
diminishes in geometrical progression as the height increases atmosphere

in arithmetical progression. This theorem is due to Halley. tempera-

Without formal mathematics we see the truth of it by remark

ing that differences of pressure are
( 752) equal to differences

of level multiplied by the density of the fluid, or by the proper
mean density when the density differs sensibly between the two

stations. But the density, when the temperature is constant,

varies in simple proportion to the pressure, according to Boyle s

and Mariotte s law. Hence differences of pressure between pairs

of stations differing equally in level are proportional to the proper

mean values of the whole pressure, which is the well-known

compound interest law. The rate of diminution of pressure

per unit of length upwards in proportion to the whole pressure

at any point, is of course equal to the reciprocal of the height

above that point that the atmosphere must have, if of constant

density, to give that pressure by its weight. The height thus

denned is commonly called
&quot; the height of the homogeneous Height of

J
.

the homo-

atmosphere, a very convenient conventional expression.

is equal to the product of the volume occupied by the unit

mass of the gas at any pressure into the value of that pressure
reckoned per unit of area, in terms of the weight of the unit of

mass. If we denote it by H, the exponential expression of the

law is p =p e~x/H
,
which agrees with the final formula of 752.

The value of H for dry atmospheric air, at the freezing

temperature, according to Regnault, is, in the latitude of Paris,

799,020 centimetres, or 26,215 feet. Being inversely as the force

of gravity in different latitudes
( 222), it is 798,533 centimetres,

or 26,199 feet, in the latitude of Edinburgh and Glasgow.
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Analytical
investiga
tion of the
preceding
theorems.

Let X, Y, Z be the components, parallel to three rectangular

axes, of the force acting on the fluid at (x, y, z), reckoned per
unit of its mass. Then, inasmuch as the difference of pressures

on the two faces 87/82 of a rectangular parallelepiped of the fluid

is 83/8^ Sx, the equilibrium of this portion of the fluid, regarded

for a moment
( 564) as rigid, requires that

From this and the symmetrical equations relative to y and z we

have -7- = Xp t -r = lp, -
T =Zp (1),

ax dy dz

which are the conditions necessary and sufficient for the equi

librium of any fluid mass.

From these we have

This shows that the expression Xdx + Ydy + Zdz must be the

complete differential of a function of three independent variables,

or capable of being made so by a factor; that is to say, that a

series of surfaces exists which cuts the lines of force at right

angles ;
a conclusion also proved above

( 749).

When the forces belong to a conservative system no factor is

required to make the complete differential
;
and we have

if V denote
( 485) their potential at

(x, y, z) : so that (2) be

comes dp = pdV .............................. (3).

This shows that p is constant over equipotential surfaces (or is a

function of V) ,
and it gives K

p=- dV -(4),

showing that p also is a function of V; conclusions of which we

have had a more elementary proof in 752. As (4) is an

analytical expression equivalent to the three equations (1), for

the case of a conservative system of forces, we conclude that

Conditions 754. It is both necessary and sufficient for the equilibrium
Ubrmmof of an incompressible fluid completely filling a rigid closed
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vessel, and influenced only by a conservative system of forces, fluid com-

that its density be uniform over every equipotential surface, Fng a closed

that is to say, every surface cutting the lines of force at right
Ve

angles. If, however, the boundary, or any part of the boun

dary, of the fluid mass considered, be not rigid; whether it be

of flexible solid matter (as a membrane, or a thin sheet of

elastic solid), or whether it be a mere geometrical boundary, on

the other side of which there is another fluid, or nothing [a

case which, without believing in vacuum as a reality, we may
admit in abstract dynamics ( 438)], a farther condition is

necessary to secure that the pressure from without shall fulfil

(4) at every point of the boundary. In the case of a bounding
membrane, this condition must be fulfilled either through

pressure artificially applied from without, or through the in

terior elastic forces of the matter of the membrane. In the

case of another fluid of different density touching it on the

other side of the boundary, all round or over some part of it,

with no separating membrane, the condition of equilibrium of

a heterogeneous fluid is to be fulfilled relatively to the whole

fluid mass made up of the two
;
which shows that at the boun

dary the pressure must be constant and equal to that of the

fluid on the other side. Thus water, oil, mercury, or any other Free surface

liquid, in an open vessel, with its free surface exposed to the vessel is

air, requires for equilibrium simply that this surface be level.

755. Recurring to the consideration of a finite mass of fluid Fluid, in

completely filling a rigid closed vessel, and supposing that, if vessel,

the potential of the force-system (as in the case referred conserva-

to in the sixth and seventh lines of 758) be a cyclic* func- offerees.

* We here introduce term &quot;cyclic function&quot; to designate a function of

more than one variable which experiences a constant addition to its value

every time the variables are made to vary continuously from a given set of

values through some cycle of values back to the same primitive set of values.

Examples (1) tan&quot;
1

(y/x).
This is the potential of the conservative system

referred to in the first clause of the third sentence of 758.

(2) f(x* + y*)iaxr
1

(y/x). This expresses the fluid pressure in the case

of hydrostatic example described in the next to the last sentence of 758.

(3) The apparent area of a closed curve (plane or not plane) as seen

from any point (x, y, z).



312 ABSTRACT DYNAMICS. [755.

Fluid, in tion, the enclosure containing the liquid is singly-continuous,

vessel, we see, from what precedes, that, if homogeneous and incom-

conserva- pressible. the fluid cannot be disturbed from equilibrium by
live system
offerees, any conservative system ot torces; but we do not require the

analytical investigation to prove this, as we should have &quot; the

perpetual motion&quot; if it were denied, which would violate the

hypothesis that the system of forces is conservative. On the

other hand, a non-conservative system of forces cannot, under

any circumstances, equilibrate a fluid which is either uniform

in density throughout, or of homogeneous substance, rendered

heterogeneous in density only through difference of pressure.

But if the forces, though not conservative, be such that through

every point of the space occupied by the fluid a surface can be

drawn which shall cut at right angles all the lines of force it

meets, a heterogeneous fluid will rest in equilibrium under

their influence, provided ( 750) its density, from point to point

of every one of these orthogonal surfaces, varies inversely as the

product of the resultant force into the thickness of the infi

nitely thin layer of space between that surface and another of

the orthogonal surfaces infinitely near it on either side. (Com

pare 488.)

The same conclusion is proved as a matter of course from (1)

since that equation is merely the analytical expression that the

force at every point (#, y, z) is along the normal to that surface

of the series given by different values of C in p = C, which

Fluid under passes through (x, y, z) \
and that the magnitude of the resultant

any system ,.

offerees. force 13

Itdjf d *A
V Vcfa* dy da?)_

,

of which the numerator is equal to SC/r, if r ba the thickness at

(x, y, z) of the shell of space between two surfaces p = G and

p = G+&C, infinitely near one another on two sides of
(x, y, z).

(4) Functions of any number of variables invented by suggestion

from (2).

The designation
&quot;

many-valued function&quot; which has hitherto been applied

to such functions is not satisfactory, if only because it is also applicable to

functions of roots of algebraic or transcendental equations.
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The analytical expression of the condition which X, F, Z must Fluid under

fulfil in order that (1) may be possible is found thus; offerees.

d dp d dp

we have

since -7- -r~ i- T~ &amp;gt;

dz ay ay dz

Performing the differentiations, and multiplying the first of the

resulting equations by X, the second by Y, and the third by Z,

we have

\dy dz ) \dz dxj \dx dy J

which is merely the well-known condition that Xdx + Ydy + Zdz

may be capable of being rendered by a factor the complete dif

ferential of a function of three independent variables.

Or if we multiply the first of (5) by dp/dx, the second by dp/dy,

and the third by dpjdz, and add, we have

___ ___Q
dx\dy dz dy\dz dx) dz\dx dy)

This shows that the line whose direction-cosines are propor-

dZ dY dX dZ dY dX
tional to ---r ,

----=-
, -^

--
-j-

dy dz dz ax ax dy

is perpendicular to the surface of equal density through (x, y, );

and (6) shows that the same line is perpendicular to the resultant

force. It is therefore tangential both to the surface of equal

density and to that of equal pressure, and therefore to their

curve of intersection. The differential equations of this curve

are therefore

dx dy dz

dZ_dY _ _
dy dz dz dx dx dy

756. If we imagine all the fluid to become rigid except an Equilibrium

i-i iTiT ! c f i
condition.

infinitely thin closed tubular portion lying in a surface ot equal

density, and if the fluid in this tubular circuit be moved through

any space along the tube and left at rest, it will remain in
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Equilibrium equilibrium in the new position, all positions of it in the tube

being indifferent because of its homogeneousness. Hence the

work (positive or negative) done by the force (X, Y, Z) on any

portion of the fluid in any displacement along the tube is

balanced by the work (negative or positive) done on the

remainder of the fluid in the tube. Hence a single particle,

acted on always by the resultant of X, Y, Z, and kept moving
round the circuit, that is to say moviog along any closed curve

on a surface of equal density, has, at the end of one complete

circuit, done just as much work against that resultant force

in some parts of its course, as the resultant force does on it in

the remainder of the circuit.

An interesting application of (j) 190 may be made to prove

this result analytically. Thus, if we take for a, ft, y our present

force-components X, Y, Z ;
and for the surface there referred

to, a surface of equal density in our heterogeneous Huid; the

expression

ff , (,fdZ dY\ fdX dZ\ dY dX\\
II dS &amp;lt;l(-3 T- ) + ** ( j T&quot; )

+n ~3 r~ ) r

J] \ \dy dzj \dz dxj dx dyj)

vanishes because of (7), and we conclude that

/ (Xdx + Ydy + Zdz) = 0,

for any closed circuit on a surface of equal density.

ideal 757 The following ideal example, and its realization in a
example of . , . . . -,

equuibrium subsequent section ( 759), show a curiously interesting practical

Sveforces application of the theory of fluid equilibrium under extraordi

nary circumstances, generally regarded as a merely abstract

analytical theory, practically useless and quite unnatural,
&quot; be

cause forces in nature follow the conservative law/

758. Let the lines of force be circles, with their centres all

in one line, and their planes perpendicular to it. They are cut

at right angles by planes through this axis; and therefore a

fluid may be in equilibrium under such a system of forces.

The system will not be conservative if the intensity of the

force be according to any other law than inverse proportionality

to distance from this axial line
;
and the fluid, to be in equili

brium, must be heterogeneous, and be so distributed as to vary
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in density from point to point of every plane through the axis, ideal

inversely as the product of the force into the distance from the ^Srlu
axis. But from one such plane to another it may be either co

n
nserva-

n ~

uniform in density, or may vary arbitrarily. To particularize

farther, we may suppose the force to be in direct simple pro

portion to the distance from the axis. Then the fluid will be

in equilibrium if its density varies from point to point of every

plane through the axis, inversely as the square of that distance.

If we still farther particularize by making the force uniform

all round each circular line of force, the distribution of force

becomes precisely that of the kinetic reactions of the parts of a

rigid body against accelerated rotation. The fluid pressure will

( 749) be equal over each plane through the axis. And in

one such plane, which we may imagine carried round the axis

in the direction of the force, the fluid pressure will increase in

simple proportion to the angle at a rate per unit angle (41)
equal to the product of the density at unit distance into the

force at unit distance. Hence it must be remarked, that if any
closed line (or circuit) can be drawn round the axis, without

leaving the fluid, there cannot be equilibrium without a firm

partition cutting every such circuit, and maintaining the differ

ence of pressures on the two sides of

it, corresponding to the angle 2?r.

Thus, if the axis pass through the

fluid in any part, there must be a

partition extending from this part of

the axis continuously to the outer

bounding surface of the fluid. Or

if the bounding surface of the whole

fluid be annular (like a hollow anchor-ring, or of any irregular

shape), in other words, if the fluid fills a tubular circuit; and

the axis (A) pass through the aperture of the ring (without

passing into the fluid); there must be a firm partition (CD)

extending somewhere continuoiisly across the channel, or

passage, or tube, to stop the circulation of the fluid round it;

otherwise there could not be equilibrium with the supposed
forces in action. If we further suppose the density of the fluid

to be uniform round each of the circular lines of force in the
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am le of
system we ^ave so âr considered (so that the density shall be

under
b
non
m e(lua^ over evei7 circular cylinder having the line of their

cen^res ^or ^s ax^s an(^ snall vary from one such cylindrical

surface to another, inversely as the squares of their radii), we

may, without disturbing the equilibrium, impose any conserva

tive system of force in lines perpendicular to the axis; that is

( 488), any system of force in this direction, with intensity

varying as some function of the distance. If this function be

the simple distance, the superimposed system of force agrees

precisely with the reactions against curvature, that is to say,

the centrifugal forces, of the parts of a rotating rigid body.

Actual case. 759. Thus we arrive at the remarkable conclusion, that if

a rigid closed box be completely filled with incompressible

heterogeneous fluid, of density varying inversely as the square
of the distance from a certain line, and if the box be moveable

round this line as a fixed axis, and be urged in any way by
forces applied to its outside, the fluid will remain in equilibrium

relatively to the box
;
that is to say, will move round with the

box as if the whole were one rigid body, and will come to rest

with the box if the box be brought again to rest: provided

always the preceding condition as to partitions be fulfilled if

the axis pass through the fluid, or be surrounded by continuous

lines of fluid. For, in starting from rest, if the fluid moves

like a rigid solid, we have reactions against acceleration, tan

gential to the circles of motion, and equal in amount to &r

per unit of mass of the fluid at distance r from the axis, o&amp;gt;

being the rate of acceleration
( 42) of the angular velocity;

and
( 259) we have, in the direction perpendicular to the

axis outwards, reaction against curvature of path, that is to

say, &quot;centrifugal force,&quot; equal to o&amp;gt;V per unit of mass of the

fluid. Hence the equilibrium which we have demonstrated

in the preceding section, for the fluid supposed at rest, and

arbitrarily influenced by two systems of force (the circular

non-conservative and the radial conservative system) agreeing

ActuaUcaso in law with these forces of kinetic reaction, proves for us now

equilibrium the D Alembert ( 264) equilibrium condition for the motion

conserva-
11 &quot;

of the whole fluid as of a rigid body experiencing accelerated

rotation
;
that is to say, shows that this kind of motion fulfils
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for the actual circumstances the laws of motion, and, therefore,

that it is the motion actually taken by the fluid.

760. If the fluid is of homogeneous substance and uniform Relation

temperature throughout, but compressible, as all real fluids are, density and

it can be heterogeneous in density, only because of difference applied

of pressure in different parts ;
the surfaces of equal density

must be also surfaces of equal pressure ; and, as we have seen

above
( 753), there can be no equilibrium unless the system

of forces be conservative. The function which the density is

of the pressure must be supposed known
( 448), as it depends

on physical properties of the fluid. Compare 752.

I^ P =f(p) (9).

&quot;We have, by 753 (3), integrated,

fdp/f(p) = C-V (10),

or, if F denote such a function, that

*J

{{dp/f(p)}=p (11),

p=F(C-V),
and, by (9), P=f{F(G- V)} (12).

761. In 746 we considered the resultant pressure on a Resultant

plane surface, when the pressure is uniform. We may now
consider briefly the resultant pressure on a plane area when
the pressure varies from point to point, confining our attention

to a case of great importance; that in which gravity is the

only applied force, and the fluid is a nearly incompressible

liquid such as water. In this case the determination of the

position of the Centre of Pressure is very simple ;
and the

whole pressure is the same as if the plane area were turned

about its centre of inertia into a horizontal position.

The pressure at any point at a depth z in the liquid may be Kinetic

expressed by P = P*+P.
where p is the (constant) density of the liquid, and p the (atmo

spheric) pressure at the free surface, reckoned in units of weight

per unit of area.

Let the axis of x be taken as the intersection of the plane
of the immersed plate with the free surface of the liquid, and

that of y perpendicular to it and in the plane of the plate. Let
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Resultant a be the inclination of the plate to the vertical. Let also A be

a plane the area of the portion of the plate considered, and x. y. the co-
area.

.

ordmates of its centre of inertia.

Then the whole pressure is

jjpdxdy = fj(p + py cos a) dxdy
= Ap + Apy cos a.

The moment of the pressure about the axis of x is

$$pydxdy = Ap y + Ak
2

p cos a,

k being the radius of gyration of the plane area about the axis

of x.

For the moment about y we have

ffpxdxdy = Ap x + p cos a ffxydxdy.

The first terms of these three expressions merely give us again

the results of 746; we may therefore omit them. This will be

equivalent to introducing a stratum of additional liquid above the

free surface such as to produce an equivalent to the atmospheric

pressure. If the origin be now shifted to the upper surface of

this stratum we have

Pressure = Apy cos a,

Moment about Ox = Ak2

p cos a,
3

Distance of centre of pressure from axis of x = .

But if &, be the radius of gyration of the plane area about a

horizontal axis in its plane, and passing through its centre of

inertia, we have, by 283, k* = k,
2 + y\

Hence the distance, measured parallel to the axis of y, of the

centre of pressure from the centre of inertia is kfly; and, as we
&quot;

might expect, diminishes as the plane area is more and more

submerged. If the plane area be turned about the line through

its centre of inertia parallel to the axis of x, this distance varies

as the cosine of its inclination to the vertical; supposing, of

course, that by the rotation neither more nor less of the plane

area is submerged.

LOSS of 762. A body, wholly or partially immersed in any fluid

we?ght
n
by influenced by gravity, loses, through fluid pressure, in apparent

weight an amount equal to the weight of the fluid displaced.

For if the body were removed, and its place filled with fluid

homogeneous with the surrounding fluid, there would be equi-
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librium, even if this fluid be supposed to become rigid. And LOSS of

the resultant of the fluid pressure upon it is therefore a single 5

force equal to its weight, and in the vertical line through its

centre of gravity. But the fluid pressure on the originally

immersed body was the same all over as on the solidified portion

of fluid by which for a moment we have imagined it replaced,

and therefore must have the same resultant. This proposition

is of great use in Hydrometry, the determination of specific

gravity, etc. etc.

Analytically, the following demonstration is of interest,

especially in its analogies to some preceding theorems, and

others which occur in electricity and magnetism.
If V be the potential of the impressed forces, dV/dx is the

force parallel to the axis of x on unit of matter at xyz, and

pdxdydz is the mass of an element of the fluid, and therefore the

whole force parallel to the axis of # on a mass of fluid substituted

for the immersed body, is represented by the triple integral
/- dV
Ip -dxdydz taken through the whole space enclosed by the

surface. But, by 752,

dp _ dV
dx~~p dx

Hence the triple integral becomes

~
dxdydz = ffpdydat

doc

extended over the whole surface.

Let dS be an element of any surface at x, y, z
; X, p, v the

direction-cosines of the normal to the element; p the pressure in

the fluid in contact with it. The whole resolved pressure parallel

to the axis of x is Px
= ff\pdS

-
1 1 Ip

the same expression as above.

The couple about the axis of z, due to the applied forces on

any fluid mass, is
( 559) 2,dm (Xy

-
Yx), dm representing the

mass of an element of fluid.

This may be written in the form

rrr i 7 j ( dV
-///p^^y .a,

the integral being taken throughout the mass.
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Loss of

apparent
weight by
immersion
in ft fluid.

This is evidently equal to

Lemma.

$$pydydz ffpxdzdx

which is the couple due to surface-pressure alone.

763. The following lemma, while in itself interesting, is of

great use in enabling us to simplify the succeeding investigations

regarding the stability of equilibrium of floating bodies :

Let a homogeneous solid, the weight of unit of volume of

which we suppose to be unity, be cut by a horizontal plane

in XYX Y. Let be the

centre of inertia, and let XX ,

YY be the principal axes, of

this area.

Let there be a second plane

section of the solid, through

YY
,
inclined to the first at

an infinitely small angle, 6.

Then (1) the volumes of the

two wedges cut from the solid by these sections are equal;

(2) their centres of inertia lie in one plane perpendicular to

FF; and (3) the moment of the weight of each of these,

round FF ,
is equal to the moment of inertia about it of the

corresponding portion of the area, multiplied by 0.

Take OX, OF as axes, and let 6 be the angle of the wedge:

the thickness of the wedge at any point P (x, y) is Ox, and the

volume of a right prismatic portion whose base is the elementary

area dxdy at P is Oxdxdy. Now let []
and ()

be employed to

distinguish integrations extended over the portions of area to

the right and left of the axis of y respectively,
while integrals

over the whole area have no such distinguishing mark. Let

a and a! be these areas, v and v the volumes of the wedges;

(* #)&amp;gt; (* &amp;gt; V )
the co-ordinates of their centres of inertia. Then

v= 6 \jfxdxdy]
= axO

-v = (ffxdxdy)
= a x O,

whence v-v = Offxdxdy=Q since is the centre of inertia.
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Hence v = v
t
which is (1). Lemma.

Again, taking moments about XX
,

and - v y = 6 (jjxydxdy).

Hence vij
- v y =

jfaydxdy.

But for a principal axis
( 281) ^xydm vanishes. Hence

vyv y =Q, whence, since v = v
,
we have^ = ^ ,

which proves (2).

And (3) is merely a statement in words of the obvious equation

[ffx. xOdxdy] P. 6 [ffafdxdy].

764. If a positive amount of work is required to produce stability of

any possible infinitely small displacement of a body from a 3? floating

position of equilibrium, the equilibrium in this position is

stable
( 291). To apply this test to the case of a floating

body, we may remark, first, that any possible infinitely small

displacement may ( 26, 95) be conveniently regarded as com

pounded of two horizontal displacements in lines at right angles
to one another, one vertical displacement, and three rotations

round rectangular axes through any chosen point. If one of

these axes be vertical, then three of the component displace

ments, viz. the two horizontal displacements and the rotation

about the vertical axis, require no work (positive or negative),
and therefore, so far as they are concerned, the equilibrium is

essentially neutral. But so far as the other three modes of

displacement are concerned, the equilibrium may be stable, or

may be unstable, or may be neutral, according to the fulfilment

of conditions which we now proceed to investigate.

765. If, first, a simple vertical displacement, downwards Vertical dis-

let us suppose, be made, the work is done against an increasing
pl&amp;lt;

&quot;

resultant of upward fluid pressure, and is of course equal
to the mean increase of this force multiplied by the whole

space. If this space be denoted by z
t
the area of the plane of

flotation by A, and the weight of unit bulk of the liquid by w t

the increased bulk of immersion is clearly Az, and therefore

the increase of the resultant of fluid pressure is wAz, and is

in a line vertically upward through the centre of gravity of A.
The mean force against which the work is done is therefore

5, as this is a case in which work is done against a force

VOL. ii. 21
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in vertical

displace
ment.

workdone increasing from zero in simple proportion to the space. Hence
the work done is \wAz^. We see, therefore, that so far as

vertical displacements alone are concerned, the equilibrium is

necessarily stable, unless the body is wholly immersed, when
the area of the plane of flotation vanishes, and the equilibrium
is neutral.

Displace- 766. The lemma of 763 suggests that we should take, as

rotation the two horizontal axes of rotation, the principal axes of the

axis in the plane of flotation. Considering then rotation through an in-

finitely small angle 6 round one of these, let G and E be the

displaced centres of gravity of the solid, and of the portion

of its volume which was immersed when it was floating in

equilibrium, and 6r
,
E the positions which they then had

;

all projected on the plane of the diagram which we suppose to

be through / the centre of inertia of the plane of flotation.

The resultant action of gravity on the displaced body is
&quot;FT,

its

weight, acting downwards through G
}
and that of the fluid
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pressure on it is W upwards through E corrected by the amount Dispiace-

(upwards) due to the additional immersion of the wedge AIA rotation
\ r J & &amp;gt; about an

and the amount (downwards) due to the extruded wedge B IB.

Hence the whole action of gravity and fluid pressure on the flotation.

displaced body is the couple of forces up and down in verticals

through 6f and E, and the correction due to the wedges. This

correction consists of a force vertically upwards through the

centre of gravity of A IA, and downwards through that of BIB.

These forces are equal [ 763 (1)], and therefore constitute a

couple which
[

763 (2)] has the axis of the displacement for

its axis, and which
[ 763 (3)] has its moment equal to 9wk*A,

if A be the area of the plane of flotation, and k its radius of

gyration ( 281) round the principal axis in question. But

since GE, which was vertical (as shown by GE )
in the position

of equilibrium, is inclined at the infinitely small angle 9 to the

vertical in the displaced body, the couple of forces W in the

verticals through G and E has for moment WhO, if h denote GE
and is in a plane perpendicular to the axis, and in the direction

tending to increase the displacement, when G is above E.

Hence the resultant action of gravity and fluid pressure on the

displaced body is a couple whose moment is

(wAtf
- Wh) 0, or w (Atf

-
Vh) 0,

if V be the volume immersed. It follows that when AJc
2

&amp;gt; Vh
the equilibrium is stable, so far as this displacement alone is

concerned.

Also, since the couple worked against in producing the dis- work done

placement increases from zero in simple proportion to the placement&quot;

angle of displacement, its mean value is half the above; and

therefore the whole amount of work done is equal to

767. If now we consider a displacement compounded of a General dis-

. placement.
vertical (downwards) displacement z, and rotations through

infinitely small angles 6, 9 round the two horizontal principal

axes of the plane of flotation, we see (8 765, 766) that the work re-

. , . . quired.
work required to produce it is equal to

w [Az*+ (Alt
-

Vh) P + (AM* - Vh} &quot;],

212
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Conditions and we conclude that, for complete stability with reference to
of stability. ... ,. , \ .

J

all possible displacements of this kind, it is necessary and

Akz Ak 2

sufficient that h&amp;lt;

-^- ,
and &amp;lt;

^-.

The meta- 768. When the displacement is about any axis through the

Condition of centre of inertia of the plane of flotation, the resultant of fluid

encef
lst &quot;

pressure is equal to the weight of the body ;
but it is only

when the axis is a principal axis of the plane of flotation that

this resultant is in the plane of displacement. In such a case

the point of intersection of the resultant with the line originally

vertical, and through the centre of gravity of the body, is called

the Metacentre. And it is obvious, from the above investiga

tion, that for either of these planes of displacement the con

dition of stable equilibrium is that the metacentre shall be

above the centre of gravity.

769. The spheroidal analysis with which we propose to

conclude this volume is proper, or practically successful, for

hydrodynamic problems only when the deviations from spheri

cal symmetry are infinitely small
; or, practically, small enough

to allow us to neglect the squares of ellipticities ( 801); or,

which is the same thing, to admit thoroughly the principle of

the superposition of disturbing forces, and the deviations pro

duced by them. But we shall first consider a case which

admits of very simple synthetical solution, without any re

striction to approximate sphericity ;
and for which the follow

ing remarkable theorem was discovered by Newton and

Maclaurin :

A homo- 770. An oblate ellipsoid of revolution, of any given eccen-

tricity, is a figure of equilibrium of a mass of homogeneous

incompressible fluid, rotating about an axis with determinate

angular velocity, and subject to no forces but those of gravitation

among its parts.

The angular velocity for a given eccentricity is independent

of the bulk of the fluid, and proportional to the square root of

its density,

771. The proof of these propositions is easily obtained from
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the results already deduced with respect to the attraction of an A homo-

ellipsoid and the properties of the free surface of a fluid as ellipsoid is

,. ,, a figure of

lOllOWS : equilibrium
of a rotating

We know, from 522, that if J.P7? be a meridional section li&amp;lt;luid mass -

of a homogeneous oblate spheroid, 00 the polar axis, OA an

equatorial radius, and P any point on the surface, the attraction

of the spheroid may be resolved into two components; one, Pp,
perpendicular to the

polar axis, and vary

ing as the ordinate

PM; the other, Ps,

parallel to the polar

axis, and varying as

PN. These compo
nents are not equal
when MP and PN are

equal, else the result

ant attraction at all

points in the surface

would pass through 0\ whereas we know that it is in some
such direction as Pf, cutting the radius OA between and A,
but at a point nearer to than n the foot of the normal at P.

Let then Pp = a . PN,

and Ps = y. PN,
where a and 7 are known constants, depending merely on the

density, (/&amp;gt;),

and eccentricity (e), of the spheroid.

Also, we know by geometry that Nn = (1
- e

2

) ON.

Hence
;
to find the magnitude of a force Pq perpendicular

to the axis of the spheroid, which, when compounded with the

attraction, will bring the resultant force into the normal Pn :

make pr = Pq, and we must have

Pr _ Nn
s

Ts
= PN=

(
~ e

Hence Pr = (I - e
2

)
% Pp

Pp-Pq
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A homo-
or pq - Jl -

(1
_ e*\

ellipsoid is a x

a figure of

equilibrium f /t s\ &amp;gt; nif-
of arotating

=
{
-

(1
- e

2

) 7} PM.
liquid mass.

Now if the spheroid were to rotate with angular velocity a&amp;gt;

about 00, the centrifugal force
( 32, 3oa, 259), would be in

the direction Pq, and would amount to a)*PM.

Hence, if we make &&amp;gt;

2 = a (1 e
2

) 7 ...................... (1) ;

the whole force on P, that is. the resultant of the attraction

and centrifugal force, will be in the direction of the normal to

the surface, which is the condition for the free surface of a mass

of fluid in equilibrium.

Now, 527 (31)*, 7 = ^p (/- tan&quot;
1

/)
7

....(2).

Hence by (1) a,
2 =

j{(3
+ /

2

) tan&quot;
1

/- 3/J ....... (3).

The square This determines the angular velocity, and proves it to be pro-

site angular portional to Jp.
velocity is

sftyof the&quot;

When e, and therefore also ft
is small, this formula is most

liquid-

easily calculated from

(4),

of which the first term is sufficient when we deal with spheroids

so little oblate as the earth.

772. The following table has been calculateo^by means of

these simplified formula?. The last figure in each of the four

last columns is given to the nearest unit. The two last columns

will be explained in 775, 776.

From this we see that the value of co
z

/27rp increases gradually

from zero to a maximum as the eccentricity e rises from zero to

* Kemark that the &quot;e&quot; of 527 is not the eccentricity of the oblate

spheroid which we now denote by e, and that with / as there and e as here we
havel-e2

=l/(l+/
a
).
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about 93, and then (more quickly) falls to zero as the eccen- Table of cor

responding
values of

1- &quot;. i. iv. v.
ellipticities

see 775. see 776. and angular
velocities.

eccentri

city e =
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Mean den- 774. It may be useful, for special applications, to indicate

earth ex- briefly how p is measured in these formulae. In the definitions

attraction Of 88 459. 460. on which the attraction formulae are based,
units.

e

unit mass is defined as exerting unit force on unit mass at

unit distance
;
and unit volume-density is that of a body which

has unit mass in unit volume. Hence, with the foot as our

linear unit, we have for the earth s attraction on a particle of

unit mass at its surface

where R is the radius of the earth (supposed spherical) in feet;

and a- its mean density, expressed in terms of the unit just

defined.

Taking 20,900,000 feet as the value of E, we have

&amp;lt;r
= 0-000000368 = 3-68 x 10&quot;

7
............... (6).

As the mean density of the earth is about 5 5 times that of

water, 479, the density of water in terms of our present unit is

10- = 67x10-*.

Time of 775. The fourth column of the table above gives the time of

sph^roTd

1

?? rotation in seconds, corresponding to each value of the eccen-

friclty
eccen &quot;

tricity, p being assumed equal to the mean density of the

earth. For a mass of water these numbers must be multiplied

by V5 5, as the time of rotation to give the same figure is in

versely as the square root of the density. ,

For a homogeneous liquid mass, of the earth s mean density,

rotating in 23h 56m 4s

,
we find e = 093, which corresponds to

an ellipticity of about ^.

Mass and 776. An interesting form of this problem, also discussed by
momentum Laplace, is that in which the moment of momentum and the

mass of the fluid are given, not the angular velocity ;
and it is

required to find what is the eccentricity of the corresponding

given
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ellipsoid of revolution, the result proving that there can be Mass and
, moment of
DUt One. momentum

of fluid

Calling M the mass, and p the moment of momentum, we siven-

have

M=^Pc*(l +f
2

)
........................... (7),

and
fji
= %Mc

2

(l +/
2

)o&amp;gt;

......................... (8).

These equations, with (3) determine c, f, and w, for any given

values of M and p. Eliminating c and w from (8) by (7) and

(3), we find

It is by this formula, that Col. v. of the table of 772 has

been calculated. The result shows that for any given value of

fji,
the moment of momentum, there is one and only one value

of/

777. It is evident that a mass of any ordinary liquid (not

a perfect fluid, 742), if left to itself in any state of motion,

must preserve unchanged its moment of momentum
( 235).

But the viscosity, or internal friction
( 742), will, if the mass

remain continuous, ultimately destroy all relative motion

among its parts ;
so that it will ultimately rotate as a rigid

solid. We have seen
( 776), that if the final form be an ellip

soid of revolution, there is a single definite value of its eccen

tricity. But, as it has not yet been discovered whether there

is any other form consistent with stable equilibrium, we do not

know that the mass will necessarily assume the form of this

particular ellipsoid. Nor in fact do we know* whether even

the ellipsoid of rotation may not become an unstable form if

the moment of momentum exceed some limit depending on the

mass of the fluid. We shall return to this subject in Vol. II.,

as it affords an excellent example of that difficult and delicate

question Kinetic Stability ( 346). [See 778 below.]

* The present tense in this sentence relates to fifteen years ago. We now

(Jan. 1882) know that the ellipsoid of revolution is unstable for moment of

momentum exceeding some definite multiple of M^/p*; or, which comes to the

same, the figure is unstable with eccentricity exceeding some definite amount.
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Equilibrium 778. No one seems yet to have attempted to solve the

three un- general prohlem of finding all the forms of equilibrium which a

mass of homogeneous incompressible fluid rotating with uniform

angular velocity may assume. Unless the velocity be so small

that the figure differs but little from a sphere (a case which

will be carefully treated later), the problem presents difficulties

of an exceedingly formidable nature. It is therefore of some

importance to show by a synthetical process that besides the

ellipsoid of revolution, there is an ellipsoid with three unequal

axes, which is a figure of equilibrium when the moment of mo
mentum is great enough. This curious theorem was discovered

by Jacob! in 1834, and seems, simple as it is, to have been

enunciated by him as a challenge to the French mathematicians*.

The following proof was given by Archibald Smith in the second

number of the Cambridge Mathematical Journal^.

The components of the attraction of a homogeneous ellipsoid,

whose semi-axes are a, 6, c, on a point (x, y, z) at its surface,

found in 526 above, may be written Ax, By, Cz, where

where D = (a
2 + u}^ (b

2 + uf (c
2 + ufi.

If the ellipsoid revolve, with angular velocity w, about the

axis of z, the components of the centrifugal force are w2

x, w2

y, 0.

Hence the components of the whole resultant of gravity and

centrifugal force on a particle at (x, y, z) are

(A
-

o&amp;gt;

2

) x, (B
-

or) y, Cz.

But the direction-cosines of the normal to the surface of the

ellipsoid at (x, y, z),
are proportional to

and, for equilibrium, the resultant force must he perpendicular

to the free surface. Hence

a2

(A
- w2

)
= b

2

(B
- o2

)
= c

2C............... ,..(2).

* See a Paper by Liouville, Journal de VEcole Poly technique, cahier xxm.

foot-note to p. 290.

t Cambridge Math. Journal, Feb. 1838,
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These equations give Equilibrium

a*b*(A-B) + (a?-V)c*C = Q ................ (3),

2
a2A-b zB

(a
2 =

3
............................ (4);

which, with A, JB, C eliminated by (1), become

du n
...... ()

^&quot;t J, (a&amp;gt;

+ u)(b- + u)D
&amp;lt;

6
&amp;gt;

The first factor of (5) equated to zero, gives a = b, and (6) gives

the angular velocity for any assumed ratio of c to a : thus we

fall back on the solution by an ellipsoid of revolution worked

out in 771 above.

Another solution is found by equating the second factor of

(5) to zero. This equation which is equivalent to

udu f\ 1 1 f
t

I
may be regarded as an equation to determine c

a
for any given

values of a and b. It has obviously one and only one real

positive root; which is proved by remarking, that while u in

creases from zero to infinity, u/D
3
decreases continually to zero,

and the last factor under the integral sign continuously increases,

only reaching a positive value for infinitely great values of u
when c is zero, and being positive for all values of u when

l/c
2 = or &amp;lt; l/a

2 + l/b
2

: and that, for any constant value of u,

the last factor increases with increase of c
2
. As every element

of the integral is positive when l/c
2 = or &amp;lt; l/a

2 + l/b
2 and as

we may write this inequality as follows, c
2 = or &amp;gt; b

2

/(l + b
2

/a*),

we see that if c = or &amp;lt; the less of a, or b, every element of the

integral is positive, and we infer that the root c is less than the

least of a or b.

778 . The solution of (7) for the case of a = b is particularly

interesting. It will be interpreted and turned to account in

778&quot;. It is the case, and obviously the only case, in which (5),

regarded as an equation for determining any one of the quanti

ties, a2
,
b
2

,
c
2
in terms of the two others, has equal positive roots.

In this case the integral forming the first member of (7) is
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Equilibrium
ellipsoid of

three un
equal axes.

General
problem of

rotating
liquid mass.

Stability
and insta

bility of
oblate

spheroid of
revolution.

reducible from the elliptic function required to express it when

a is not equal to b, to a formula involving no other transcendent

than an inverse circular function. The reduction is readily

performed by aid of the notation of 527 (22), where however

a stood for what we now denote by c. It is to be noted also

that the q of 527 is now zero, because the point we are now

considering is on the surface of the ellipsoid. The resulting

transcendental equation equivalent to (7) may, if, as in 527

(28), we put

*-& &amp;lt;&amp;gt;

be written as follows,

tan-/ !+/

When f is increased continuously from zero to infinity the left-

hand member of this equation diminishes continuously from

unity to zero : the right-hand member diminishes also from

unity to zero, but diminishes at first less rapidly and afterwards

more rapidly than the other. Thus there is one and only one

root, which by trial and error we find to be

/= 1-39457.

Some numerical particulars relating to this case are inserted in

the Table of 772, as amended for the present edition.

778 . During the fifteen years which have passed sinc$

the publication of our first edition we have never abandoned

the problem of the equilibrium of a finite mass of rotating

incompressible fluid. Year after year, questions of the multi

plicity of possible figures of equilibrium have been almost in

cessantly before us, and yet it is only now, under the compulsion
of finishing this second edition of the second part of our first

volume, with hope for a second volume abandoned, that we

have succeeded in finding anything approaching to full light on

the subject.

(a) The oblate ellipsoid of revolution is proved by 776 and

by the table of 772 to be stable, if the condition of being an

ellipsoid of revolution be imposed. It is obviously not stable

for very great eccentricities without this double condition of

being both a figure of revolution and ellipsoidal.
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(b} If the condition of being a figure of revolution is im- Annular
fiffUr69&quot;

posed, without the condition of being an ellipsoid, there is, for probably

f
r

notstablej

large enough moment of momentum, an annular figure of equi

librium which is stable, and an ellipsoidal figure which is un

stable. It is probable, that for moment of momentum greater

than one definite limit and less than another, there is just one

annular figure of equilibrium, consisting of a single ring.

(c) For sufficiently large moment of momentum it is certain

that the liquid may be in equilibrium in the shape of two, three,

four or more separate rings, with its mass distributed among
them in arbitrary portions, all rotating with one angular velocity,

like parts of a rigid body. It does not seem probable that the

kinetic equilibrium in any such case can be stable.

(d) The condition of being a figure of revolution being still unless

j ,1 , P . .... ,

under con-

imposed, the single-ring figure, when annular equilibrium is straintto

possible at all, is probably stable. It is certainly stable for very symmetri-
T ,, , ,

J
cal round

large values ot the moment 01 momentum. an axis.

(e) On the other hand let the condition of being ellipsoidal

be imposed, but not the condition of being a figure of revolution.

Whatever be the moment of momentum, there is one, and only
one revolutional figure of equilibrium, as we have seen in 776 ;

we now add :

(1) The equilibrium in the revolutional figure is stable, or instability

i-^ p H
of oblate

. , , ,. r f v a C~\ . spheroid
unstable, according as/(=- J

is &amp;lt; or &amp;gt; I*394o7. andstabi-

Jacobian

(2) When the moment of momentum is less than that which flgure-

makes /= 1 39457 (or eccentricity
= 81266) for the revolu

tional figure, this figure is not only stable, but unique.

(3) When the moment of momentum is greater than that

which makes /= 1 39457 for the revolutional figure, there is.

besides the unstable revolutional figure, the Jacobian figure

( 778 above) with three unequal axes, which is always stable

if the condition of being ellipsoidal is imposed. But, as will be

seen in (/) below, the Jacobian figure, without the constraint

to ellipsoidal figure, is in some cases certainly unstable, though
it seems probable that in other cases it is stable without any
constraint.
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Unstable (f) Looking back now to 778 and choosing the case of a
figures. a great multiple of b, we see obviously that the excess of b above

c must in this case be very small in comparison with c. Thus

we have a very slender ellipsoid, long in the direction of a, and

approximately a prolate figure of revolution relatively to this

long a-axis, which, revolving with proper angular velocity round

its shortest axis c, is a figure of equilibrium. The motion so

constituted, which, without any constraint is, in virtue of 778

a configuration of minimum energy or of maximum energy, for

given moment of momentum, is a configuration of minimum

energy for given moment of momentum, subject to the condition

that the shape is constrainedly an ellipsoid. From this proposi

tion, which is easily verified, in the light of 778, it follows

that, with the ellipsoidal constraint, the equilibrium is stable.

The revolutional ellipsoid of equilibrium, with the same moment

of momentum, is a very flat oblate spheroid ;
for it the energy

is a minimax, because clearly it is the smallest energy that a

revolutional ellipsoid with the same moment of momentum can

have, but it is greater than the energy of the Jacobian figure

with the same moment of momentum.

(g) If the condition of being ellipsoidal is removed and the

liquid left perfectly free, it is clear that the slender Jacobian

ellipsoid of (f) is not stable, because a deviation from ellipsoidal

figure in the way of thinning it in the middle and thickening it

towards its ends, would with the same moment of momentum

give less energy. With so great a moment of momentum as to

give an exceedingly slender Jacobian ellipsoid, it is clear that

Configura- another possible figure of equilibrium is, two detached approxi

mately spherical masses, rotating (as if parts of a solid) round

an axis through their centre of inertia, and that this figure is

stable. It is also clear that there may be an infinite number of

such stable figures, with different proportions of the liquid in

the two detached masses. With the same moment of momen
tum there are also configurations of equilibrium with the liquid

in divers proportions in more than two detached approximately

spherical masses.

(h) No configuration in more than two detached masses,

tion of two
detached
rotating
masses
stable.
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has secular stability according to the definition of (k) below, conflgura-

and it is doubtful whether any of them, even if undisturbed by detached*

viscous influences, could have true kinetic stability : at all masses

events, unless approaching to the case of the three material

points proved stable by Gascheau (see Routh s
&quot;

Rigid

Dynamics,&quot; 475, p. 381).

(i)
The transition from the stable kinetic equilibrium of a

liquid mass in two equal or unequal portions, so far asunder

that each is approximately spherical, but disturbed to slightly

prolate figures (found by the well-known investigation of

equilibrium tides, given in 804 below), and to the more and

more prolate figures which would result from subtraction of

energy without change of moment of momentum, carried so far

that the prolate figures, now not even approximately elliptic,

cease to be stable, is peculiarly interesting. We have a most

interesting gap between the unstable Jacobian ellipsoid when
too slender for stability, and the case of smallest moment of

momentum consistent with stability in two equal detached

portions. The consideration of how to fill up this gap with

intermediate figures, is a most attractive question, towards

answering which we at present offer no contribution.

() When the energy with given moment of momentum is

either a minimum or a maximum, the kinetic equilibrium is

clearly stable, if the liquid is perfectly inviscid. It seems

probable that it is essentially unstable, when the energy is a

minimax
;
but we do not know that this proposition has been

ever proved.

(k) If there be any viscosity, however slight, in the liquid, or

if there be any imperfectly elastic solid, however small, floating

on it or sunk within it, the equilibrium in any case of energy
either a minimax or a maximum cannot be secularly stable :

and the only secularly stable configurations are those in which

the energy is a minimum with given moment of momentum.
It is not known for certain whether with given moment of

momentum there can be more than one secularly stable configu

ration of equilibrium of a viscous fluid, in one continuous mass,

but it seems to us probable that there is only one.
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Digression 779 ^ few WOrds of explanation, and some graphic illustra-
on spherical

L *

bannonics.
tions, of the character of spherical surface harmonics may pro

mote the clear understanding not only of the potential and

hydrostatic applications of Laplace s analysis, which will occupy

us presentty, but of much more important applications to be

made in Vol. II., when waves and vibrations in spherical fluid

or elastic solid masses will be treated. To avoid circumlo-

Harmonic cutions, we shall designate by the term harmonic spheroid, or

spheroid.
Sp}ieT{Gal harmonic undulation, a surface whose radius to any

point differs from that of a sphere by an infinitely small length

varying as the value of a surface harmonic function of the

position of this point on the spherical surface. The definitions

of spherical solid and surface harmonics [App. B. (a), (6), (c)]

show that the harmonic spheroid of the second order is a surface

of the second degree subject only to the condition of being

approximately spherical: that is to say, it may be any elliptic

spheroid (or ellipsoid with approximately equal axes). Gene

rally a harmonic spheroid of any order i exceeding 2 is a sur

face of algebraic degree , subject to further restrictions than

that of merely being approximately spherical.

Let S
t
be a surface harmonic of the order i with the coefficient of

the leading term so chosen as to make the greatest maximum

value of the function unity. Then if a be the radius of the

mean sphere, and c the greatest deviation from it, the polar

equation of a harmonic spheroid of order i will be

r = a + cS
{ (1)

if S is regarded as a function of polar angular co-ordinates, 0, &amp;lt;.

Considering that c/a is infinitely small, we may reduce this to an

equation in rectangular co-ordinates of degree i, thus : Squaring

each member of (1); and putting crV
1+1 for c/a; from which it

differs by an infinitely small quantity of the second order, we

have

r*=*+J?i(*^) (2).
Cu

This, reduced to rectangular co-ordinates, is of algebraic degree i.

Harmonic 780. The line of no deviation from the mean spherical sur-

and
a
i\ne

ne
face is called the nodal line, or the nodes of the harmonic

spheroid. It is the line in which the spherical surface is cut
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by the harmonic nodal cone; a certain cone with vertex at the Digression

centre of the sphere, and of algebraic degree equal to the order harmonics.

of the harmonic. An important property of the harmonic nodal nodaf cone

line, indicated by an interesting hydrodynamic theorem due to
ar

Rankine*, is that when self-cutting at aoy point or points, the

different branches make equal angles with one another round

each point of section.

Denoting r*S
t
of 779 by F, we have

F&amp;lt;

= .............................. (3)

for the equation of the harmonic nodal cone. As V
i
is [App. Theorem

B. (a)] a homogeneous function of degree i, we may write nodal cone.

F,
=

J2&amp;gt;*
+ H^-1 +H2

z{
-2 + H&-* + etc........ . . . . . (4),

where H
Q

is a constant, and H
]}

ff
2 ,
H

3 , etc., denote integral

homogeneous functions of x, y of degrees 1,2, 3, etc. ; and then

the condition y
2
Vi = [App. B. (a)] gives

which express all the conditions binding on ZT
,
ff

1 ,
H2 ,

etc.

Now suppose the nodal cone to be autotomic, and, for brevity

and simplicity, take OZ along a line of intersection. Then z = a

makes (3) the equation in x, y, of a curve lying in the tangent

plane to the spherical surface at a double or multiple point of the

nodal line, and touching both or all its branches in this point.

The condition that the curve in the tangent plane may have a

double or multiple point at the origin of its co-ordinates is, when

(4) is put for Vi}

H
Q
=

; and, for all values of x, y, H^ = 0.

Hence (5) gives V^a =
0,

so that, if H = Ax2 + Bif + 2Cxy,

we have .4 + ^ = 0. This shows that the two branches cut one

another at right angles.

If the origin be a triple, or 7i-multiple point, we must have

H =0, 1̂

= 0,...^ 1
= 0,

and (5) gives V
2#

n
=

* &quot; Summary of the Properties of certain Stream-Lines.&quot; Phil. Mag., Oct.

1864.

VOL. II. 22
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Digression
on spherical
harmonics.

Theorem
regarding
nodal cone.

Hence
[

707 (23), writing v for J-

Cases of

solid har
monics re
solvable
into factors.

Polar har
monics.

Zonal and
sectorial

harmonics
defined.

or. if x = p cos
&amp;lt;, y = p sin

&amp;lt;,

H
n
=

2p&quot; (A cos
n&amp;lt;f&amp;gt;

+ B sin
n&amp;lt;$&amp;gt;\

which shows that the n branches cut one another at equal angles

round the origin.

781. The harmonic nodal cone may, in a great variety of

cases [V(
resolvable into factors], be composed of others of lower

degrees. Thus (the only class of cases yet worked out) each of

the 2i + 1 elementary polar harmonics [as we may conveniently

call those expressed by (36) or (37) of App. B, with any one

alone of the 2i + l coefficients A
8 ,
B

s]
has for its nodes circles

of the spherical surface. These circles, for each such harmonic

element, are either (1) all in parallel planes (as circles of lati

tude on a globe), and cut the spherical surface into zones, in

which case the harmonic is called zonal
;
or (2) they are all in

planes through one diameter (as meridians on a globe), and cut

the surface into equal sectors, in which case the harmonic is

called sectorial
;
or (3) some of them are in parallel planes,

and the others in planes through the diameter perpendicular to

those planes, so that they divide the surface into rectangular

quadrilaterals, and (next the poles) triangular segments, as

areas on a globe bounded by parallels of latitude, and meridians

at equal successive differences of longitude.

With a given diameter as axis of symmetry there are, for

complete harmonics [App. B. (c), (cT)], just one zonal harmonic

of each order and two sectorial. The zonal harmonic is a function

of latitude alone (^TT 0, according to the notation of App. B.);

being the /
0)

given by putting s in App. B. (38). The

sectorial harmonics of order i, being given by the same with

s = i, are

sin
{# cos i

&amp;lt;,
and sin^sin

i$....&amp;lt; (1).

The general polar harmonic element of order i, being the

@
4

(s)

coss(/&amp;gt;
and S^smscf) of B. (38), with any value of s from

to i
f
has for its nodes i s circles in parallel planes, and s

great circles mtersectiug one another at equal angles round
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their poles; and the variation from maximum to minimum Digression,,,.,. ,. , onspheric.-il

along the equator, or any parallel circle, is according to the harmonics,

simple harmonic law. It is easily proved (as the mathematical

student may find for himself) that the law of variation is

approximately simple harmonic along lengths of each meridian

cutting but a small number of the nodal circles of latitude, and

not too near either pole, for any polar harmonic element of high
order having a large number of such nodes (that is, any one Tesserai

for which i s is a large number). The law of variation along surface by

a meridian in the neighbourhood of either pole, for polar har- polar har

monic elements of high orders, will be carefully examined and

illustrated in Vol. II., when we shall be occupied with vibra

tions and waves of water in a circular vessel, and of a circular

stretched membrane.

782. The following simple and beautiful investigation of

the zonal harmonic due to Murphy* may be acceptable to the

analytical student; but ( 453) we give it as leading to a use

ful formula, with expansions deduced from it, differing from any
of those investigated above in App. B :

&quot;Pnop. I.

&quot; To find a rational and entire function of given dimensions Murpby-s
&quot; with respect to any variable, such that when multiplied by fnvention

&quot;

any rational and entire function of lower dimensions, the harmonics.

&quot;

integral of the product taken between the limits and 1
&quot;

shall always vanish.

&quot;

Lety(tf) be the required function of n dimensions with respect
&quot; to the variable t then the proposed condition will evidently re-
&quot;

quire the following equations to be separately true
; namely,

&amp;lt;......jr/(*)^=o, !f(t)tdt=v, ff(t)fdt=o, j/w-vt-o,
&quot; each integral being taken between the given limits.

&quot; Let the indefinite integral of/(), commencing when t = 0, be
&quot;

represented by /() ; the indefinite integral of/(), commencing
&quot;also when t = Q, by/8() ;

and so on, until we arrive at the
&quot; functionfn (t), which is evidently of 2n dimensions. Then the
&quot; method of integrating by parts will give, generally,

&quot;

jf(t) fdt =

*
Treatise on Electricity. Cambridge, 1833.

99 9
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Digression
on spherical
harmonics.

Murphy s

analytical
invention
of the above
harmonics.

&quot; Let us now put t = l, and substitute for x the values 1, 2, 3,

...... (* 1) successively; then in virtue of the equations (a),

&quot;

Hence, the function f.(t) and its (i -1) successive differential

&quot; coefficients vanish, both when t = 0, and when t = I
;
therefore

&quot;

t
! and (1

-
ty are each factors

of/&amp;lt;(0 ;
and since this function is

&quot;of 2i dimensions, it admits of no other factor but a constant c.

&quot;Putting
l-t = tf,

we thus obtain

&quot;and therefore
(JUO

&quot;Corollary.
It we suppose the first term of/(J),

when arranged

&quot;

according to the powers of t,
to be unity, we evidently have

c=r _ on this supposition we shall denote the above
1.2.3 i

&quot;

quantity by Qt
.

&quot;PROP. II.

Murphy s &quot;The function Qt
which has been investigated in the pre

analysis.
(

ceding proposition, is the same as the coefficient of S in the

&quot;

expansion of the quantity

&quot;Let u be a quantity which satisfies the equation

(c)
u = t + eu(l-u);

&quot;that is, w= - ^ + ~{1 - 2e (1
-

2*) + 6
2

}

J
;

ZiS &amp;gt;

&quot;therefore -^-={1

&quot;But if, as before, we write t for 1 - 1,
we have, by Lagrange s

&quot;theorem, applied to the equation (c),

&quot;If we differentiate, and put for (U f its value 1 2 - 3 - *& Siven
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&quot;by
the former proposition, we get Digression

on spherical
du harmonjcs.

T = 1 + Q,e + Q2
e
2 + Q/ + etc. Murphy

,
8

analysis.

&quot;Comparing this with the above value of the proposition is

&quot;manifest.

&quot;PROP. Y.

&quot; To develope the function Q..

11First Expansion. By Prop. I., we have
harmonics.

&quot; Second Expansion. If u and v are functions of any variable t
t

&quot;then the theorem of Leibnitz gives the identity

d*
, ,

dlu . dv dl
~ lu i (i

-
1) d*v d {

~ 2
v_ M= ,__ +,___ + _L_____ +etc .

&quot;Put u - t* and v = t \ and dividing by 1 . 2 . 3...i, we have

&quot; Third Expansion. Put 1 - 2t = p, and therefore tt = ~r-,

J
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Digression
on spherical
harmonics.

Formulae
for zonal,

The
2,

t and /A of Murphy s notation are related to the we
have used, thus :

cos )
.(2).

Also it is convenient to recall from App. B. (v), (38), (40), and

(42), that the value of Q( [or ^
0)

of App. B. (61)], when = is

unity, and that it is related to the f ,
of our notation for polar

harmonic elements, thus :

and tesseral

harmonics.

Biaxal
harmonic
expanded.

1.2.3...* (3),

as is proved also by comparing (g) with App. B. (38). &quot;We add

the following formula, manifest from (38), which shows a deriva

tion of f from f, valuable if only as proving that the i - s

roots of
^*
= are all real and unequal, inasmuch as App. B.

(p) proves that the i roots of
4

0) = are all real and unequal :

i d

sin i s + 1

From this and (3) we find

w-

~l
o o / \ rJ D

V / oiri*/)
*

1.3.5...(2i-l)
&quot;

dp&quot;

.(5).

And lastly, referring to App. B. (w); let

Q (
and Q t [cos cos + sin sin cos

(&amp;lt;f&amp;gt;

-
&amp;lt;#&amp;gt; )]

denote respectively what Q t
becomes when cos 6 is replaced by

cos
,
and again by cos cos + sin 6 sin cos

(&amp;lt;

-
&amp;lt;

)
: and let /u

denote cos 0; and /x ,
cos &. By what precedes, we may put (61)

of App. B into the following much more convenient form, agree

ing with that given by Murphy (Electricity, p. 24) :

Qt [cos 6 cos & + sin sin 6 cos
(&amp;lt;

-
&amp;lt;

)]
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783. Elementary polar harmonics become, in an extreme Physical

case of spherical harmonic analysis, the proper harmonics for relative^

the treatment, by either polar or rectilinear rectangular co- angular and

ordinates, of problems in which we have a plane, or two plates,

parallel planes, instead of a spherical surface, or two concentric

spherical surfaces, thus:

First, let S
t
be any surface harmonic of order i, and F. and

Flf-i *lie solid harmonics [App. B.
(&amp;gt;)] equal to it on the

spherical surface of radius a : so that

Now [compare 655]

and, therefore, if a be infinite, and r - a a finite quantity denoted

by Xj which makes log (r/a)
= x/a, and if i be infinite, and

afi pt
we have

Q = .* = .*, and similarly g)

&quot;

= r ( +I&amp;gt;* = -*
j

the solid harmonics then become

Supposing now S
t
to be a polar harmonic element, and consider

ing, as Green did in his celebrated Essay on Electricity, an area

sensibly plane round either pole, or considering any sensibly plane

portion far removed from each pole, it is interesting and instruc

tive to examine how the formulae [App. B. (36)... (40), (61), (65);

and 782, (e), (/), (#)] wear down to the proper plane polar

or rectangular formulae. This we may safely leave to the ana

lytical student. In Vol. n. the plane polar solution will be fully

examined. At present we merely remark that, in rectangular

surface co-ordinates
(?/, z) in the spherical surface reduced to a

plane, St may be any function whatever fulfilling the equation

d S
,

d S, S,

*?
+

rf?
+
/
=0

and that the rectangular solution into which the elementary polar
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spherical harmonic wears down, for sensibly plane portions of the

spherical surface far removed from the poles, is

y z
= cos-cos--

9 3

where q and
q&quot;

are two constants such that q
3 + q

2 = p
9

.

Examplea 784. The following tables and graphic representations of

haraSics. all the polar harmonic elements of the 6th and 7th orders may
be useful in promoting an intelligent comprehension of the

subject.

Q6
=

1^(231/i
8
-315/*

4 + 105jtt
8
-5) =Sixth order:

Zonal,

Tesseral,

df*

- /*)-*

SectoriaL

- 2 *3 not shown.

Seventh
order :

Zonal,

Tesseral,

Q7
=TV (429/t

- 693^*+ 315/i
2 - 35) /*

=

_
5)

= - ~J

d^
=/

fetctorial.
- ?~* not shown.
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fj..
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Polar bar
monies ot

sixth order. M-
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Diag. No. 1.

347

Graphic
representa
tion of polar

. harmonicsof
1-1 sixth order.

g

3

a
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Graphic
representa
tion of polar
harmonics
of seventh
order.

ABSTRACT DYNAMICS.

Diag. No. 3.

[784

Diag. No. 4.
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785. A short digression here on the theory of the potential, Digression
1=5 ... on theory of

and particularly on eqnipotential surfaces differing little from potential.

concentric spheres, will simplify the hydrostatic examples which

follow. First we shall take a few cases of purely synthetical

investigation, in which, distributions of matter being given,

resulting forces and level surfaces
( 487) are found

;
and then

certain problems of Green s and Gauss s analysis, in which, from

data regarding amounts of force or values of potential over

individual surfaces, or shapes of individual level surfaces, the

distribution of force through continuous void space is to be

determined. As it is chiefly for their application to physical Sea level.

geography that we admit these questions at present, we shall

occasionally avoid circumlocutions by referring at once to the

Earth, when any attracting mass with external equipotential

surfaces approximately spherical would answer as well. We
shall also sometimes speak of &quot;the sea level&quot; ( 750, 754)

merely as a &quot;

level surface,&quot; or &quot; surface of equilibrium
&quot;

( 487)

just enclosing the solid, or enclosing it with the exception of

comparatively small projections, as our dry land. Such a sur

face will of course be an equipotential surface for mere gravita

tion, when there is neither rotation nor disturbance due to

attractions of other bodies, such as the moon or sun, and due

to change of motion produced by these forces on the Earth
;
but Level sur-

it may be always called an equipotential surface, as we shall see

( 793) that both centrifugal force and the other disturbances centrifugal

referred to may be represented by potentials.

786. To estimate how the sea level is influenced, and how Disturbance
of sea. level

much the force of gravity in the neighbourhood is increased or by denser
J than aver-

diminished by the existence within a limited volume under- age matter
* under

ground of rocks of density greater or less than the average, let us ground.

imagine a mass equal to a very small fraction, 1/n, of the earth s

whole mass to be concentrated in a point somewhere at a depth
below the sea level which we shall presently suppose to be

small in comparison with the radius, but great in comparison
with \j*Jn of the radius. Immediately over the centre of dis

turbance, the sea level will be raised in virtue of the disturbing

attraction, by a height equal to the same fraction of the radius
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Disturbance
of sea level

by a denser
than aver

age matter
under
ground.

Intensity
and direc
tion of

gravity
altered by
under
ground
local ex-

average
density.

that the distance of the disturbing point from the chief centre

is of n times its depth below the sea level as thus disturbed.

The augmentation of gravity at this point of the sea level

will be the same fraction of the whole force of gravity that n

times the square of the depth of the attracting point is of the

square of the radius. This fraction, as we desire to limit our

selves to natural circumstances, we must suppose to be very

small. The disturbance of direction of gravity will, for the

sea level, be a maximum at points of a circle described from

A as centre, with D/*J2 as radius
;
D being the depth of the

centre of disturbance. The amount of this maximum deflec

tion will be fV3a
2

A*
2
of the unit angle of 57 296 ( 41), a

denoting the earth s radius.

Let G be the centre of the chief attracting mass (1
- n~ l

),
and

B that of the disturbing mass
(I/ft),

the

two parts being supposed to act as if

collected at these points. Let P be any

point on the equipotential surface for

which the potential is the same as what it

would be over a spherical surface of radius

a, and centre C if the whole were collected

111(7. Then (491)

1 1
_1_ =

1

UP
+
n BP a 9

which is the equation of the equipotential surface in question.

It gives

This expresses rigorously the positive or negative elevation of

the disturbed equipotential at any point above the undisturbed

surface of the same potential. For the point A, over the centre

of disturbance, it gives

~
n . BA

which agrees exactly with the preceding statement : and it proves

the approximate truth of that statement as applied to the sea

level when we consider that when BP is many times BA, CP-a
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is many times smaller than its value at A. We leave the proof

of the remaining statements of this and the following sections

(
78 7... 79 2) as an exercise for the student.

787. If p be the general density of the upper crust, and a- Effects of

the earth s mean density, and if the disturbance of 786 be above aver-

due to there being matter of a different density, p, throughout onm level,

a spherical portion of radius b, with its centre at a depth D rection and

below the sea level, the value of n will be cra
3

/(p p)b
5

;
and gravity:

the elevation of the sea level, and the proportionate augmenta
tion of gravity at the point right over it, will be respectively

The actual value of a- is about double that of p. And let us example.

suppose, for example, that Z&amp;gt;
= 6 = 1000 feet, or 21 Q 00 of the

earth s radius, and p to be either equal to 2p or to zero. The

previous results become

+ ^ of a foot, and ^fa of gravity,

which are therefore the elevation or depression of sea level, and

the augmentation or diminution of gravity, due to there being
matter of double or zero density through a spherical space 2000

feet in diameter, with its centre 1000 feet below the surface.

The greatest deviation of the plummet is at points of the circle

of 707 feet radius round the point; and it amounts to YWOOO
of the radian, or nearly 2&quot;.

788. It is worthy of remark that, to set off against the in

crease in the amount of gravity due to the attraction of the

disturbing mass, which we have calculated for points of the sea

level in its neighbourhood, there is but an insensible deduc

tion on account of the diminution of the attraction of the chief

mass, owing to increase of the distance of the sea level from its

centre, produced by the disturbing influence. The same remark

obviously holds for disturbances in gravity due to isolated

mountains, or islands of small dimensions, and it will be proved

( 794) to hold also for deviations of figure represented by
harmonics of high orders. But we shall see

( 789) that it is

otherwise with harmonic deviations of low orders, and conse-

VOL. ir. 23
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quently with wide-spread disturbances, such as are produced

by great tracts of elevated land or deep sea. We intend to

return to the subject in Vol. IL. under Properties of Matter,

when we shall have occasion 10 examine the phenomenal and

experimental foundations of our knowledge of gravity ;
and we

shall then apply 477 (b) (c) (d), 478, 479, and solutions of

other allied problems, to investigate the effects on the magnitude
and direction of gravity, and on the level surfaces, produced by
isolated hills, mountain-chains, large table lands, and by cor

responding depressions, as lakes or circumscribed deep places
in the sea, great valleys or clefts, large tracts of deep ocean.

Harmonic 789. All the level surfaces relative to a harmonic spheroid

iTveis.

ld!

( 779) of homogeneous matter are harmonic spheroids of the

same order and type. That one of them, which lies as much
inside the solid as outside it, cuts the boundary of the solid in

a line (or group of lines) the mean level line of the surface of

the solid. This line lies on the mean spherical surface, and

therefore ( 780) it constitutes the nodes of each of the two

harmonic spheroidal surfaces which cut one another in it. If i

be the order of the harmonic, the deviation of the level spheroid
is

( 545,815) just 3/(2i + l) of the deviation of the bounding

spheroid, each reckoned from the mean spherical surface.

Thus if i=l, the level coincides with the boundary of the

solid : the reason of which is apparent when it is considered

that any spherical harmonic deviation of the first order from a

given spherical surface constitutes an equal spherical surface

round a centre at some infinitely small distance from the centre

of the given surface.

If i = 2, the level surface deviates from the mean sphere

by f of the deviation of the bounding surface. This is the

case of an ellipsoidal boundary differing infinitely little from

spherical figure. It may be remarked that, as is proved readily

from 522, those of the equipotential surfaces relative to

a homogeneous ellipsoid which lie wholly within it are exact

ellipsoids, but not so those which cut its boundary or lie wholly
without it : these being approximately ellipsoidal only when

the deviation from spherical figure is very smalL
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790. The circumstances for very high orders are sufficiently

illustrated if we confine our attention to sectorial harmonics
J5jgf]

s

ders

( 781). The figure of the line in which a sectorial harmonic

spheroid is cut by any plane perpendicular to its polar axis is

[ 781 (1)], as it were, a harmonic curve
( 62) traced from a

circular instead of a straight line of abscissas. Its wave length

(or double length along the line of abscissas from one zero or

nodal point to the next in order) will be l/i of the circumference

of the circle. And when i is very great, the factor sin # makes

the sectorial harmonic very small, except for values of 9 differ

ing little from a right angle, and therefore a sectorial harmonic

spheroid of very high order consists of a set of parallel ridges

and valleys perpendicular to a great circle of the globe, of

nearly simple harmonic form in the section by the plane of

this circle (or equator), and diminishing in elevation and

depression symmetrically on the two sides of it, so as to be

insensible at any considerable angular distance (or latitude)

from it on either side. The level surface due to the attraction

of a homogeneous solid of this figure is a figure of the same

kind, but of much smaller degree of elevations and depressions,

that is, as we have seen, only 3/(2t + 1) of those of the figure :

or approximately three times the same fraction of the inequali

ties of figure that the half-wave length is of the circumference

of the globe. It is easily seen that when i is very large the

level surface at any place will not be sensibly affected by the

inequalities in the distant parts of the figure.

791. Thus we conclude that, if the substance of the earth Undulation
. of level due

were homogeneous, a set of several parallel mountain-chains to pa 1161

.

r mountain-

and valleys would produce an approximately corresponding un-

clulation of the level surface in the middle district : the height

to which it is raised, under each mountain-crest, or drawn down

below the undisturbed level, over the middle of a valley, being
three times the same fraction of the height of mountain above

or depth of valley below mean level, that the breadth of the

mountain or of the valley is of the earth s circumference.

792. If the globe be not homogeneous, the disturbance in

magnitude and direction of gravity, due to any inequality in

232
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tion of

gravity.

Practical the figure of its bounding surface, will ( 787) be pla- of what it
conclusions * V
astodis- would be if the substance were homogeneous; and further, it
turbancesof
sea-ievei, may be remarked that, as the disturbances are supposed to be
and amount J

and dn-ec- small, we may superimpose such as we have now described, on

any other small disturbances, as, for instance, on the general

oblateness of the earth s figure, with which we shall be occupied

presently.

Practically, then, as the density of the upper crust is some

where about J the earth s mean density, we may say that the

effect on the level surface, due to a set of parallel mountain-

chains and valleys, is, of the general character explained in

791, but of half the amounts there stated. Thus, for instance,

a set of several broad mountain-chains and valleys twenty

nautical, miles from crest to crest, or hollow to hollow, and of

several times twenty miles extent along the crests and hollows,

and 7,200 feet vertical height from hollow to crest, would

raise and lower the level by 2J feet above and below what

it would be were the surface levelled by removing the elevated

matter and filling the valleys with it.

Determin-
ateness of

potential
through
space from
its value
over every
point of a
surface.

793. Green s theorem [App. A. (e)]* and Gauss s theorem

( 497) show that if the potential of any distribution of matter,

attracting according to the Newtonian law, be given for every

point of a surface completely enclosing this matter, the poten

tial, and therefore also the force, is determined throughout all

space external to the bounding surface of the matter, whether

this surface consist of any number of isolated closed surfaces,

each simply continuous, or of a single one. It need scarcely

be said that no general solution of the problem has been ob

tained. But further, even in cases in which the potential has

been fully determined for the space outside the surface over

which it is given, mathematical analysis has hitherto failed to

determine it through the whole space between this surface and

the attracting mass within it. We hope to return, in later

* First apply Green s theorem to the surface over which the potential is

given. Then Gauss s theorem shows that there cannot be two distributions of

potential agreeing through all space external to this surface, but differing for

any part of the space between it and the bounding surface of the matter.
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volumes, to the grand problem suggested by Gauss s theorem

of 497. Meantime, we restrict ourselves to questions practi

cally useful for physical geography.

Example (1) Let the enclosing surface be spherical, of radius Determina-

a and let F (0, &amp;lt;)

be the given potential at any point of it, potential

specified in the usual manner by the polar co-ordinates 0,
&amp;lt;f&amp;gt;.

value over

Green s solution
[

499 (3) and App. B. (46)] of his problem for

the spherical surface is immediately applicable to part of our

present problem, and gives

J_ /-a* r*

**&amp;lt;* Jo Jo r*-

(r
2

-a*)F(O
f

,

for the potential at any point (r, 0,
&amp;lt;f&amp;gt;)

external to the spherical

surface. But inasmuch as Laplace s equation ^
2u - is satisfied

through the whole internal space as well as the whole external

space by the expression (46) of App. B., and in our present pro

blem v
2r=0 is only satisfied [491 (c)]

for that part of the in

ternal space which is not occupied by matter, the expression (3)

gives the solution for the exterior space only. When F (6, &amp;lt;f&amp;gt;)

is

such that an expression can be found for the definite integral in

finite terms, this expression is necessarily the solution of our pro

blem through all space exterior to the actual attracting body. Or

when F(0, &amp;lt;j&amp;gt;)

is such that the definite integral, (3),
can be trans

formed into some definite integral which varies continuously across

the whole or across some part of the spherical surface, this other

integral will carry the solution through some part of the interior

space : that is, through as much of it as can be reached without

discontinuity (infinite elements) of the integral, and without

meeting any part of the actual attracting mass. To this subject

we hope to return later in connexion with Gauss s theorem

( 497) ;
but for our present purpose it is convenient to expand

(3) in ascending powers of a/r, as before in App. B.
(s).

The

result [App. B. (51)] is

J^ *) +
(;)V.(ft

*) + eta (3 bis)

where F
Q (0, &amp;lt;), ^(0, &amp;lt;), etc., are the successive terms of the

expansion [App. B. (52)] of F (0, &amp;lt;)

in spherical surface liar-
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monies ; the general term being given by the formula

QiF(0 ,
&amp;lt;/&amp;gt; )

sin 6 dO
d&amp;lt;j&amp;gt;

. ... (4),

where Qt
is the function of

(0, &amp;lt;/&amp;gt;) (6 ,
&amp;lt;f&amp;gt;) expressed by App.

B. (61).

In any case in which the actual attracting matter lies all within

an interior concentric spherical surface of radius a
,
the harmonic

expansion of F(0} &amp;lt;)

must be at least as convergent as the

geometrical series

a fa\ 2 /a \
3

+
( )

+
(

+ etc.
;a \aj \aj

and therefore (3 bis) will be convergent for every value of r

exceeding a
,
and will consequently continue the solution into

the interior at least as far as this second spherical surface.

Example (2) Let the attracting mass be approximately
centrobaric

( 534), and let one equipotential surface completely

enclosing it be given. It is required to find the distribution of

force and potential through all space external to the smallest

spherical surface that can be drawn round it from its centre of

gravity as centre. Let a be an approximate or mean radius
;

and, taking the origin of co-ordinates exactly coincident with

the centre of inertia
( 230), let

(5)

be the polar equation of the surface
;
F being for all values of

and
&amp;lt;/&amp;gt;

so small that we may neglect its square and higher

powers. Consider now two proximate points (r, 0,
&amp;lt;j&amp;gt;) (a, 0, &amp;lt;).

The distance between them is aF(0, &amp;lt;f&amp;gt;)

and is in the direction

through O
y
the origin of co-ordinates. And if Jtf be the whole

mass, the resultant force at any point of this line is approximately

equal to M/a
2 and is along this line. Hence the difference of po

tentials
( 486) between them is MF(0, &amp;lt;/&amp;gt;)/.

And if a be the

proper mean radius, the constant value of the potential at the

given surface (5) will be precisely M/a. Hence, to a degree of

approximation consistent with neglecting squares of F (&, &amp;lt;j&amp;gt;),

the

potential at the point (a, 0,
&amp;lt;/&amp;gt;)

will be

.(6).
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Hence the problem is reduced to that of the previous example : Detemina-

and remarking that the part of its solution depending on the term potential

Mja of (6) is of course simply M/r, we have, by (3 bis), for the form of an

potential now required,
spherical

(\ a ft
2

~\ equipoten-
u = M + * f +etc -

where F
i
is given by (4). F

n
is zero in virtue of a being the

proper mean radius; the equation expressing this condition

being S5F(^ &amp;lt;)

sin 0d!0ety = ..................... (8).

If further be chosen in a proper mean position, that is to say,

such that 5!QiF (0&amp;gt; ^)sm6d6d^ = Q ................... (9)

F
l
vanishes and

[ 539 (12)] is the centre of gravity of the

attracting mass; and the harmonic expansion of F(0t
&amp;lt;f&amp;gt;)

becomes

,&amp;lt;i&amp;gt;)

+ etc..... ..... (10).

If a be the radius of the smallest spherical surface having for

centre and enclosing the whole of the actual mass, the series (7)

necessarily converges for all values of 6 and $, at least as rapidly

as the geometrical series

.(11)

for every value of r exceeding a. Hence (7) expresses the

solution of our present particular problem. It may carry it even

further inwards
;
as the given surface (6) may be such that the

harmonic expansion (10) converges more rapidly than the series

1+ +
U&amp;gt;

+
U&quot;

etc-

The direction and magnitude of the resultant force are of Resultant

course
[ 486, 491] deducible immediately from (7) throughout

the space through which this expression is applicable, that is all

space through which it converges that can be reached from the

given surface without passing through any part of the actual

attracting mass. It is important to remark that as the resultant

force deviates from the radial direction by angles of the same

order of small quantities as F(0, &amp;lt;/&amp;gt;),

its magnitude will differ

from the radial component by small quantities of the same order

as the square of this : and therefore, consistently with our degree
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Resultant
force.

M
a

Resultant
force at any
point of ap
proximately
spherical
level sur
face, for

gravity
alone.

of approximation, if R denote the magnitude of the resultant force

= - - * + 3

For the resultant force at any point of the spherical surface

agreeing most nearly with the given surface we put in this for

mula r = a, and find

(13).

And at the point (r, 0, &amp;lt;)

of the given surface we have r = a

nearly enough for our approximation, in all terms except the

first, of the series (12): but in the first term, M/r*, we must put
r = a {1 + F(0, &amp;lt;J&amp;gt;)};

so that it becomes

=
&amp;lt;1

- 2 [F.

and we find for the normal resultant force at the point (0, &amp;lt;)

of

the given approximately spherical equipotential surface

...... (15).

Taking for simplicity one term, Fit alone, in the expansion of

F, and considering, by aid of App. B. (38), (40), (p), and

779... 784, the character of spherical surface harmonics, we
see that the maximum deviation of the normal to the surface

r = a{I + F
i (6,&amp;lt;j&amp;gt;)}

........................ (16)

from the radial direction is, in circular measure
( 404), just i

times the half range from minimum to maximum in the values of

F
t (6,

&amp;lt;/&amp;gt;)

for all harmonics of the second order (case i = 2), and

for all sectorial harmonics
( 781) of every order; and that

it is approximately so for the equatorial regions of all zonal

harmonics of very high order. Also, for harmonics of high

order contiguous maxima and minima are approximately equal.

We conclude that

794. If a level surface ( 487), enclosing a mass attracting

according to the Newtonian law, deviate from an approximately

spherical figure by a pure harmonic undulation ( 779) of order

i; the amount of the force of gravity at any point of it will ex

ceed the mean amount by i 1 times tbe very small fraction by
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which the distance of that point of it from the centre exceeds

the mean radius. The maximum inclination of the resultant

force to the true radial direction, reckoned in fraction of the

unit angle 57 3 ( 404) is, for harmonic deviations of the

second order, equal to the ratio which the whole range from

minimum to maximum bears to the mean magnitude. For

the class described above under the designation of sectorial

harmonics, of whatever order, ,
the maximum deviation in

direction bears to the proportionate deviation in magnitude
from the mean magnitude, exactly the ratio /(i 1); and

approximately the ratio of equality for zonal harmonics of high
orders.

Example (3). The attracting mass being still approximately

centrobaric, let it rotate with angular velocity co round OZ, and
let one of the level surfaces

( 487) completely enclosing it be

expressed by (5), 793. The potential of centrifugal force

( 800, 813), will be ia&amp;gt;

2

(a
2 +

2/

2

),
or

&amp;gt;

in solid spherical har

monics, wV +X (x
2 + y*

- 2z
2

).

This for any point of the given surface (5) to the degree of Resultant

approximation to which we are bound, is equal to pSrft of a^?
proximat

$ V +iV (J
- cos

2

0) ;

P

which, added to the gravitation potential at each point of this

surface, must make up a constant sum. Hence the gravitation

potential at (6, &amp;lt;)

of the given surface (5) is equal to

and therefore, all other circumstances and notation being as in

Example 2
( 793), we now have instead of (6) for gravitation

potential at (a, 6,
&amp;lt;f&amp;gt;),

the following:

proximately

?e
PvSLce

(16).

Hence, choosing the position of 0, and the magnitude of a, ac

cording to (9) and (8), we now have, instead of
(7), for the

potential of pure gravitation, at any point (r, 0,
&amp;lt;j&amp;gt;),

(17),



362 ABSTRACT DYNAMICS. [794.

Resultant

point of ap-

spherical

6 y

and centri-

rCe &quot;

where m denotes o&amp;gt;

2a3

/J/, or the ratio of centrifugal force at the

equator, to pure gravity at the mean distance a. The force of

pure gravity at the point (0, &amp;lt;)

of the given surface (5) is conse-

quently expressed by the following formula instead of (15):

- 3. - cos - (18).

From this must be subtracted the radial component of the centri

fugal force, which is (in harmonics)

ciairaut s

to find the whole amount of the resultant force, g (apparent

gravity), normal to the given surface : and therefore

g = -2 {l-^m+F2 (e,4&amp;gt;)-^m^-cos
2

0) + 2F3 (6^) + 3F4 (0^) + ...}(^).
CL

If in a particular case we have

F
i (0, &amp;lt;)

=
0, except for i = 2

;
and F

2 (0, &amp;lt;)

= e (J
- cos

2

0) :

this becomes

^^{l_ro-(&amp;gt;-e)(i-cos 0)} ............ (20).

795. Hence if outside a rotating solid the lines of resultant

force of gravitation and centrifugal force are cut at right angles

by an elliptic spheroid* symmetrical round the axis of rotation,

the amount of the resultant differs from point to point of this

surface as the square of the sine of the latitude : and the excess

of the polar resultant above the equatorial bears to the whole

amount of either a ratio which added to the ellipticity of the

figure is equal to two and a half times the ratio of equatorial

centrifugal force to gravity.

^or the case of a rotating fluid mass, or solid
(

with density

distributed as if fluid, these conclusions, of which the second

is now generally known as Ciairaut s theorem, were first dis

covered by Clairaut, and published in 1743 in his celebrated

treatise La Figure de la Terre. Laplace extended them by

proving the formula (19) of 794 for any solid consisting

*
Following the best French writers, we use the term spheroid to designate

any surface differing very little from spherical figure. The commoner English

usage of confining it to an ellipsoid symmetrical round an axis, and of extend

ing it to such figures though not approximately spherical is bad.
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of approximately spherical layers of equal density. Ulti- oiairaufs

mately Stokes* pointed out that, only provided the surfaces of

equilibrium relative to gravitation alone, and relative to the

resultant of gravitation and centrifugal force, are approximately

spherical; whether the surfaces of equal density are approxi

mately spherical or not, the same expression (19) holds. A
most important practical deduction from this conclusion is that, Figure of

irrespectively of any supposition regarding the distribution of detenmn-

the earth s density, the true figure of the sea level can be measure-

determined from pendulum observations alone, without any

hypothesis as to the interior condition of the solid.

Let, for brevity,

0{l+iMJ-co8 0)} =/(*, ................ (21)

where m
( 801) is ^Q-, and g is known by observation in differ

ent localities, with reduction to the sea level according to the

square of the distance from the earth s centre (not according to

Young s rule). Let the expansion of this in spherical surface

harmonics be

/(0, t) = / +/a (0, &amp;lt;/&amp;gt;) +/8 (0, &amp;lt;/&amp;gt;)

+ etc.......... (22).

We have, by (19),

(23),
Jo

and therefore the equation (5) of the level surface becomes

r=a|l +j[$ft (9t &amp;lt;f&amp;gt;) -t-3/8 (0, &amp;lt;)

+ etc.]y (24).

Confining our attention for a moment to the first two terms we
have for/2 , by App. B. (38), explicitly

Substituting in (24) squared, puttin

cos0 = -. sin$cosd&amp;gt; = -, s
r r

and reducing to a convenient form, we find

-. sin$cosd&amp;gt; = -, sin0sind&amp;gt; = -
r r r

*
&quot;On the Variation of Gravity at the surface of the Earth.&quot; Trans, of the

Camb. Phil Soc., 1849.
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if ellipsoid

unequal^
6

have one of

olutirevoution.

Now from 539, 534, we see that, if OX, OY, OZ are

principal axes of inertia, the terms of fa which, expressed in

rectangular co-ordinates, involve the products yz, zx, xy must

disappear: that is to say, we must have
1
= 0, A, = 0, ,

= 0.

^ut whether B
a
vanishes or not, if OZ is a principal axis we

must have both A
1
= and B

l
=

;
which therefore is the case,

to a very minute accuracy, if we choose for OZ the average

axis of the earth s rotation, as will be proved in Vol. IL, on the

assumption rendered probable by the reasons adduced below,

that the earth experiences little or no sensible disturbance in its

motion from want of perfect rigidity. Hence the expansion (22)

is reduced to

/ +^(cOS
2

0-J)-K^ 2 COs2&amp;lt;^

If fs (6, &amp;lt;j&amp;gt;)

and higher terms are neglected the sea level is an

ellipsoid, of which one axis must coincide with the axis of the

earth s rotation. And, denoting by e the mean ellipticity of

meridional sections, e the ellipticity of the equatorial section,

and / the inclination of one of its axes to OX, we have

In general, the constants of the expansion (22); f (being the

mean force of gravity), A
,
A

2 ,
B

2 ,
the seven coefficients in

/8 (0, &amp;lt;/&amp;gt;),

the nine in J\ (0, &amp;lt;/&amp;gt;),

and so on; are to be determined

from sufficiently numerous and wide-spread observations of the

amount of gravity.

Figure of 796. A first approximate result thus derived from pendu-

ermin-
vel

lum observations and confirmed by direct geodesic measure-

ments is that the figure of the sea level approximates to an

oblate spheroid of revolution of ellipticity about ^. Both

methods are largely affected by local irregularities of tbe

solid surface and underground density, to the elimination of

which a vast amount of labour and mathematical ability have

been applied, with as yet but partial success. Considering the

general disposition of the great tracts of land and ocean, we

can scarcely doubt tbat a careful reduction of the numerous

accurate pendulum observations tbat have been made in locali-

S?vit
s

y ;

f
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ties widely spread over the earth* will lead to the determina- Figure of

T i . i i i . ..-,. the sea level

tion oi an ellipsoid with three unequal axes coinciding more determin-

nearly on the whole with the true figure of the sea level than measure-

does any spheroid of revolution. Until this has been either ac- gravity;

complished or proved impracticable it would be vain to specu-
difficult by

late as to the possibility of obtaining, from attainable data, a lanties.

yet closer approximation by introducing a harmonic of the third

order [/8 (0, &amp;lt;/&amp;gt;)

in (27)]. But there is little probability that

harmonics of the fourth or higher orders will ever be found

useful : and local quadratures, after the example first set by

Maskelyne in his investigation of the disturbance produced by
Schehallien, must be resorted to in order to interpret irregulari

ties in particular districts
;
whether of the amount of gravity

shown by the pendulum ;
or of its direction, by geodetic observa

tion. We would only remark here, that the problems presented

by such local quadratures with reference to the amount of gravity

seem about as much easier and simpler than those with refer

ence to its direction as pendulum observations are than geodetic

measurements : and that we expect much more knowledge re

garding the true figure of the sea level from the former than

from the latter, although it is to the reduction of the latter

that the most laborious efforts have been hitherto applied. We
intend to return to this subject in Vol. II. in explaining, under

Properties of Matter, the practical foundation of our knowledge
of gravity.

797. Since 1860 geodetic work of extreme importance has Results of

been in progress, through the co-operation of the Govern-
ge

ments of Prussia, Eussia, Belgium, France, and England, in

connecting the triangulation of France, Belgium, Russia, and

Prussia, which were sufficiently advanced for the purpose in

1860, with the principal triangulation of Great Britain and

* In 1672, a pendulum conveyed by Eicher from Paris to Cayenne first

proved variation of gravity. Captain Eater and Dr Thomas Young, Trans. E. S. t

1819. Biot, Arago, Mathieu, Bouvard, and Chaix
;
Base du Systems Hetrique,

Vol. in., Paris, 1821. Captain Edward Sabine, E.E., &quot;Experiments to deter

mine the Figure of the Earth by means of the Pendulum;&quot; published for the

Board of Longitude, London, 1825. Stokes &quot; On the Variation of Gravity at the

Surface of the Earth.&quot; Cam b. Phil. Trans., 1849.
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Results of Ireland, which had been finished in 1851. With reference

to this work, General Sir Henry James made the following

remarks :

&quot; Before the connexion of the triangulation of the
&quot;

several countries into one great network of triangles extend

ing across the entire breadth of Europe, and before the dis-

&quot;

covery of the Electric Telegraph, and its extension from
&quot; Valentia (Ireland) to the Ural mountains, it was not possible
&quot;

to execute so vast an undertaking as that which is now in

&quot;

progress. It is, in fact, a work which could not possibly
&quot; have been executed at any earlier period in the history
&quot;

of the world. The exact determination of the Figure and
&quot; Dimensions of the Earth has been one great aim of astrono-
&quot; mers for upwards of two thousand years ;

and it is fortunate

&quot;that we live in a time when men are so enlightened as to

&quot; combine their labours to effect an object which is desired by all,

rt and at the first moment when it was possible to execute it.&quot;

For yet a short time, however, we must be contented with

the results derived from the recent British Triangulation, with

the separate measurements of arcs of meridians in Peru, France,

Prussia, Russia, Cape of Good Hope, and India. The investiga

tion of the ellipsoid of revolution agreeing most nearly with

the sea level for the whole Earth, has been carried out with

remarkable skill by Captain (now Colonel) A. E. Clarke, RE.,

and published in 1858, by order of the Master General and

Board of Ordnance (in a volume of 780 pages, quarto, almost

every page of which is a record of a vast amount of skilled

labour). The following account of conclusions subsequently

worked out regarding Ihe ellipsoid of three unequal axes most

nearly agreeing with the sea level, is extracted from the preface

to another volume recently published as one item of the great

work of comparison with the recent triangulations of other

countries*:

&quot;In computing the figures of the meridians and of the

*
&quot;Comparisons of the Standards of Length of England, France, Belgium,

Prussia, Kussia, India, Australia, made at the Ordnance Survey Office, South

ampton, by Captain A. E. Clarke, RE., under the direction of Colonel Sir

Henry James, B.E., F.B.S.&quot; Published by order of the Secretary of State for

War, 1866.
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&quot;

equator for the several measured arcs of meridian, it is found Results of

&quot;

that the equator is slightly elliptical, having the longer
&

&quot;diameter of the ellipse in 15 34 east longitude. In the
&quot;

eastern hemisphere the meridian of 15 34 passes through
&quot;

Spitzbergen, a little to the west of Vienna, through the Straits

&quot;of Messina, through Lake Chad in North Africa, and along

&quot;the west coast of South Africa, nearly corresponding to the
&quot; meridian which passes over the greatest quantity of land in

&quot;that hemisphere. In the western hemisphere this meridian
&quot;

passes through Behring s Straits and through the centre of the

&quot;Pacific Ocean, nearly corresponding to the meridian which

&quot;passes over the greatest quantity of water of that hemi-
&quot;

sphere.

&quot; The meridian of 105 34 passes near North-East Cape, in
&quot;

the Arctic Sea, through Tonquin and the Straits of Sunda, and

&quot;corresponds nearly to the meridian which passes over the
&quot;

greatest quantity of land in Asia
;
and in the western hemi-

&quot;

sphere it passes through Smith s Sound in Behring s Straits,
&quot; near Montreal, near New York, between Cuba and St Do-
&quot;

mingo, and close along the western coast of South America,
&quot;

corresponding nearly to the meridian passing over the greatest
&quot; amount of land in the western hemisphere.

&quot; These meridians, therefore, correspond with the most re-
&quot; markable physical features of the globe.

Feet.
&quot; The longest semi-diameter of the equatorial ellipse is 20926350

&quot;And the shortest 20919972
&quot;

Giving an ellipticity of the equator equal to ^-
&quot; The polar semi-diameter is equal to 20853429
&quot; The maximum and minimum polar compressions

&quot;

are \ and 1

&quot; Or a mean compression of very closely jfoo

&quot;

Fourteen years later Colonel Clarke corrected this result in

the following statement*: &quot;But these are affected by the error

* Extracted from pages 308, 309 of &quot;Geodesy,&quot; by Col. A. R. Clarke, C.B.

Oxford. 1880.



368 ABSTRACT DYNAMICS. [797.

Results of
&quot;

in the southern half of the old Indian arc. A revision of this
esy

&quot;

calculation, based on the revision and extension of the Indian
&quot;

geodetic operations, is to be found in the Philosophical Maga-
&quot;

zine for August, 1878, resulting in the following numbers :

&quot;

Major semi-axis of equator (long. 8.15 W.) a = 20926629
&quot; Minor semi-axis (long. 81.45

f

W.) b = 20925105

&quot; Polar semi-axis c = 20854477

&quot; The meridian of the greater equatorial diameter thus passes
&quot;

through Ireland and Portugal, cutting off a small bit of the

&quot; north-west corner of Africa : in the opposite hemisphere this

&quot;meridian cuts off the north-east corner of Asia and passes
&quot;

through the southern island of New Zealand. The meridian

&quot;

containing the smaller diameter of the equator passes through
&quot;

Ceylon on the one side of the earth and bisects North
&quot; America on the other. This position of the axes, brought out

&quot;

by a very lengthened calculation, certainly corresponds very
&quot;

remarkably with the physical features of the globe the dis-

&quot;

tribution of land and water on its surface. On the ellipsoidal

&quot;

theory of the earth s figure, small as is the difference between

&quot;the two diameters of the equator, the Indian longitudes are

&quot; much better represented than by a surface of revolution. But

&quot;it is nevertheless necessary to guard against an impression
&quot; that the figure of the equator is thus definitely fixed, for the

&quot;available data are far too slender to warrant such a con-

&quot;

elusion.&quot;

Colonel Clarke had previously found
(&quot;

Account of Principal

Triangulation,&quot; 1858) for the spheroid of revolution most nearly

representing the same set of observations, the following :

Equatorial semi-axis = a = 20926062 feet,

Polar semi-axis = c = 20855121 feet
;

whence - -
;
and ellipticity

= ~T =
29*98

Colonel Clarke s twenty-two years labours, from 1858 to

1880, have led him to but very small corrections on these

results. In his
&quot;

Geodesy,&quot; page 319, he gives the following as
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the most probable lengths of the polar semi-axis and of the Results of

mean equatorial semi-axis of the terrestrial spheroid so far as
geodesj

all observations and comparisons of standards up to 1880 have
allowed him to judge :

a = 20926202,

c = 20854895,

and their ratio

c 292-465 a-c 1

a 29*465
&amp;gt;

~
293^5

798. As an instructive example of the elementary principles Hydrostatic

of fluid equilibrium, useful also because it includes the cele- resumed
3

brated hydrostatic theories of the Tides and of the Figure of

the Earth, let us suppose a finite mass of heterogeneous incom

pressible fluid resting on a rigid spherical shell or solid sphere,

under the influence of mutual gravitation between its parts,

and of the attraction of the core supposed symmetrical ;
to be

slightly disturbed by any attracting masses fixed either in the

core or outside the fluid
;
or by force fulfilling any imaginable

law, subject only to the condition of being a conservative

system ;
or by centrifugal force.

First we may remark that were there no such disturbance

the fluid would come to rest in concentric spherical layers

of equal density, the denser towards the centre, this last

characteristic being essential for stability, which clearly re

quires also that the mean density of the nucleus shall be not

less than that of the layer of fluid next it; otherwise the

nucleus would, as it were, float up from the centre, and either

protrude from the fluid at one side, or (if the gradation of

density in the fluid permits) rest in an eccentric position

completely covered
; fulfilling in either case the condition

( 762) for the equilibrium of floating bodies.

799. The effect of the disturbing force could be at once NO mutual
. i . i . force be-

found without analysis if there were no mutual attraction tween por-

between parts of the fluid, so that the influence tending to liquid.

maintain the spherical figure would be simply the symmetrical
attraction of the fixed core. For the equipotential surfaces

VOL. ii. 24
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NO mutual would then be known (as directly implied by the data), and

tweenpor- the fluid would
( 750) arrange itself in layers of equal density

liquid: defined by these surfaces.

800. Examples of 799. (1) Let the&quot; nucleus act according

to the Newtonian law, and be either symmetrical round a point,

or
( 534) of any other centrobaric arrangement ;

and let the

disturbing influence be centrifugal force. In Vol. II. it will

appear, as an immediate consequence from the elementary

dynamics of circular motion, that kinetic equilibrium under

centrifugal force in any case will be the same as the static

equilibrium of the imaginary case in which the same material

system is at rest, but influenced by repulsion from the axis in

simple proportion to distance.

If z be the axis of rotation, and w the angular velocity, the

components of centrifugal force
( 32, 35a, 259) are w2x and

to
2

y. Hence the potential of centrifugal force is

ico
3

(x
2 + f),

reckoned from zero at the axis, and increasing in the direction

of the force, to suit the convention
( 485) adopted tor gravita

tion potentials. The expression for the latter
( 491, 534 a.) is

E
J(x* + y* + z&amp;lt;)

where E denotes the mass of the nucleus, and the co-ordinates

are reckoned from its centre of gravity ( 534) as origin. Hence

the &quot;level surfaces&quot; ( 487) external to the nucleus are given

by assigning different values to C in the equation

and the fluid when in equilibrium has its layers of equal density

and its outer boundary in these surfaces. If p be the density

and p the pressure of the fluid at any point of one of these

surfaces, regarded as functions of (7, we have
( 760)

p = fpdC .............................. (2).

Unless the fluid be held in by pressure applied to its bounding

surface, the potential must increase from this surface inwards

(or the resultant of gravity and centrifugal force, perpendicular
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as it is to the surface, must be directed inwards), as negative x mutual

pressure is practically inadmissible. The student will find it an tween
b
por-

interesting exercise to examine the circumstances under which
Jfjjfa?

the

this condition is satisfied
;
which may be best done by tracing Example&amp;lt;i).

the meridional curves of the series of surfaces of revolution

given by equation (1).

Let a and a (1 e) be the equatorial and polar semidiameters

of one of these surfaces. We have

- + l
2 2 =

E
a +2

a(l-e)
9

whence e-= 2
a

2
= ^~~ (3),

Jz/a +
^o&amp;gt;

a 2 + m

where m denotes the ratio of centrifugal force at its equator
to pure gravity at the same place. (Contrast approximately

agreeing definition of m, 794.) From this, and the form of

(1), we infer that

801. In the case of but small deviation from the spherical

figure, which alone is interesting with reference to the theory.,

of the earth s figure and internal constitution, the bounding
surface and the surfaces of equal density and pressure are very

approximately oblate ellipsoids of revolution*; the ellipticityt
of each amounting to half the ratio of centrifugal force in its

largest circle (or its equator, as we may call this) to gravity at

any part of it
;
and therefore increasing from surface to surface

outwards as the cubes of the radii. The earth s equatorial radius

is 20,926,000 feet, and its period (the sidereal day) is 86,164
mean solar seconds. Hence in British absolute measure

( 225)

the equatorial centrifugal force is (27T/86164)
2 x 20926000, or

11127. This is -^ of 32 158
;

or very approximately the same

fraction of the mean value, 32 14, of apparent gravity over the

*
Airy has estimated 24 feet as the greatest deviation of the bounding surface

from a true ellipsoid.

t A term used by writers on the figure of the earth to denote the ratio which

the difference between the two axes of an ellipse bears to the greater. Thus if e

be the ellipticity, and e the eccentricity of an ellipse, we have e
2 = 2e - e2 . Hence,

when the eccentricity is small, the ellipticity is a small quantity of the same
order as its square ; and the former is equal approximately to the square root of

twice the latter*

242
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Nomutuai whole sea level, as determined by pendulum observations. It is

tEi
n
of
P
the

thei fore [ 794 (20)1
^66&amp;gt;

or approximately ^, of the mean
liquid: value of true gravitation. Hence, if the solid earth attracted
Example (1).

merely as a point of matter collected at its centre, and there

were no mutual attraction between the different parts of the sea,

the sea level would be a spheroid of ellipticity -^J^. In reality,

we find by observation that the ellipticity of the spheroid

of revolution which most nearly coincides with the sea level is

about -j^. The difference between these, or ^L-, must therefore

be due to deviation of true terrestrial gravity from spherical

symmetry. Thus the whole ellipticity of the actual sea level,

^J^, may be regarded as made up of two nearly equal parts;

of which the greater, -^5-, is due directly to centrifugal force,

and the less, ^J^, to deviation of solid and fluid attracting

mass from any truly centrobaric arrangement ( 534). A little

later
( 820, 821) we shall return to this subject.

802. The amount of the resultant force perpendicular to

the free surface of the fluid is to be found by compounding
the force of gravity towards the centre with the centrifugal

force from the axis
;

and it will be approximately equal to

the former diminished by the component of the latter along

it, when the deviation from spherical figure is small. And
as the former component varies inversely as the square of

the distance from the centre, it will be less at the equator than

at either pole by an amount which bears to either a ratio equal

to twice the ellipticity, and which is therefore
( 801) equal to

the centrifugal force at the equator. Thus in the present case

half the difference of apparent gravity between poles and

equator is due to centrifugal force, and half to difference of

distance from the centre. The gradual increase of apparent

gravity in going from the equator towards either pole is readily

proved to be as the square of the sine of the latitude
;
and

this not only for the result of the two combined causes of

variation, but for each separately. These conclusions needed,

however, no fresh proof, as they constitute merely the appli

cations to the present case, of Clairaut s general theorems

demonstrated above
( 795).
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Analytically, for the present case, we have No mutual
force be-

j rr tween por-
_ _ _ ^_|_ tions of the

&quot; ~
dr liquid:

Example (1).

if g denote the magnitude of the resultant of true gravity and

centrifugal force; -j- [as in App. B.
(&amp;lt;?)]

rate of variation per

unit of length along the direction of r
;
and V the first member

of (1) 800. Hence taking z
2 = r

2
cos

2

0, and x2 + y
2 = r2

sin
2 we

find

.......................... (4).

On the hypothesis of infinitely small deviation from spherical

figure this becomes

g = -2 (1
-
2u)

- era sin
2

...................
(5),

if in the small term we put a, a constant, for r, and in the other

r = a (1 + u). By (1) we see that EIG is an approximate value

for r, and if we take it for a, that equation gives

=
i^-Bin

fl ......................... (G);

and using this in (5) we have

......... (7),

where, as before, m denotes the ratio of equatorial centrifugal

force to gravity.

803. Examples of 799 continued. (2) The nucleus being Example (2).

held fixed, let the fluid on its surface be disturbed by the

attraction of a very distant fixed body attracting according to

the Newtonian law.

Let r, be polar co-ordinates referred to the centre of gravity of

the nucleus as origin, and the line from it to the disturbing body
as axis

; let, as before, E be the mass of the nucleus
; lastly, let

M be the mass of the disturbing body, and D its distance from

the centre of the nucleus. The equipotentials have for their

equation
E M
f

*
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Ko mutual which for very small values of r/D, becomes approximately
force be
tween por
tions of tho E 3/ /, r ,\ /a \

liquid: - + (
1 + COS 6

}
= COllSt ()

Biample(2).
r D\ D

And if, as in corresponding cases, we put r = a (1 + u) where a

is a proper mean value of r, and u is an infinitely small

numerical quantity, a function of 6, we have finally

/in\
(10).

This is a spherical surface harmonic of the first order, and

( 789) we conclude that

The fluid will not be disturbed from its spherical figure, but

it will be drawn towards the disturbing body, so that its centre

will deviate from the centre of the nucleus by a distance

amounting to the same fraction of its radius that the attraction

of the disturbing body is of the attraction of the nucleus, on a

point of the fluid surface. This fraction is about ^Vw (being

_i__ ) for the earth and moon, as the moon s distance is 60
83x60x60 , ,

times the earth s radius, and her mass about ^ of the earths.

Hence if the earth s and moon s centres were both held fixed,

there would be a rise of level at the point nearest to the moon,

and fall of level at the point farthest from it, each equal to

^fan of the earth s radius, or about 70 feet. Or if we con

sider the sun s influence under similar unreal circumstances,

we should have a tide of 12,500 feet rise on the side next

the sun, and the same fall on the remote side
; 12,500 feet

being ( 812) ^ry^to
of the sim s distance&amp;gt;

Example for 804. Examples of 799 continued, (3) With other con

ditions, the same as in Example (2) ( 803), let one-half of

the disturbing body be removed and fixed at an equal distance

on the other side.

The equation of the equipotentials, instead of (8),
is now

E
&amp;gt;\U\_-__ +_-__]=const....(ll),

*
*

U(L&amp;gt;

2 -2rDcose+r2

) J(D
2+2rDcos8+r

2

)]
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and as the first approximation when rjD is treated as very small, Example for

instead of (9), we now have

n
= const (12);

whence finally, instead of (10), with corresponding notation;

Ma3
,

(13).

This is a spherical surface harmonic of the second order, and

Mas
/ED

3
is one-quarter of the ratio that the difference between

the moon s attraction on the nearest and farthest parts of the

earth bears to terrestrial gravity. Hence

The fluid will be disturbed into a prolate ellipsoidal figure, resuitagrees

with its lonp1 axis in the line loining the two disturbing bodies, naryequi-J
.-&quot;&quot;.. librium

and with ellipticity ( 801) equal to f of the ratio which the theory,

difference of attractions of one of the disturbing bodies on tbe

nearest and farthest points of the fluid surface bears to the

surface value of the attraction of the nucleus. If, for instance,

we suppose the moon to be divided into two halves, and these

to be fixed on opposite sides of the earth at distances each

equal to the true moon s mean distance
;
the ellipticity of the

disturbed terrestrial level would be
j^*,^,

or
. . ;ggS

!

and the whole difference of levels from highest to lowest would equilibrium

be about If feet. We shall have much occasion to use this

hypothesis in Vol. IL, in investigating the kinetic theory of the

tides. We shall see that it (or some equivalent hypothesis) is

essential to Laplace s evanescent diurnal tide on a solid spheroid

covered with an ocean of equal depth all over; but, on the

other hand, we find presently ( 814) that it agrees very closely

with the actual circumstances so far as the foundation of the

equilibrium theory is concerned.

805. The rise and fall of water at any point of the earth s

surface we may now imagine to be produced by making these

two disturbing bodies (moon and anti-moon, as we may call

them for brevity) revolve round the earth s axis once in the

lunar twenty-four hours, with the line joining them always

inclined to the earth s equator at an angle equal to the moon s

declination. If we assume that at each moment the condition



376 ABSTRACT DYNAMICS. [805.

of hydrostatic equilibrium is fulfilled
;

that is, that the free

liquid surface is perpendicular to the resultant force, we have

what is called the &quot;

equilibrium theory of the tides.&quot;

Correction 806. But even on this equilibrium theory, the rise and fall

equilibrium at any place would be most falsely estimated if we were to take it,

as we believe it is generally taken, as the rise and fall of the sphe
roidal surface that would bound the water, if none of the solid

were uncovered, that is if there were no dry land. To illustrate

this statement, let us imagine the ocean to consist of two circular

lakes A and B, with their centres 90 asunder, on the equator,

communicating with one another by a narrow channel. In the

course of the lunar twelve hours the level of lake A would

rise and fall, and that of lake B would simultaneously fall and

rise to maximum deviations from the mean level. If the areas

of the two lakes were equal, their tides would be equal, and

would amount in each to about one foot above and below the

mean level; but not so if the areas were unequal. Thus, if

the diameter of the greater be but a small part of the earth s

quadrant, not more, let us say, than 20, the amounts of the

rise and fall in the two lakes will be inversely as their areas

to a close degree of approximation. For instance, if the dia

meter of B be only -^ of the diameter of A, the rise and fall in

A will be scarcely sensible
;
while the level of B will rise and

fall by about two feet above and below its mean
; just as the

rise and fall of level in the open cistern of an ordinary barometer

is but small in comparison with the fall and rise in the tube.

Or, if there be two large lakes A, A at opposite extremities

of an equatorial diameter, two small ones B, B at two ends of

the equatorial diameter perpendicular to that one, and two

small lakes C, G at two ends of the polar axis, the largest of

these being, however, still supposed to extend over only a

small portion of the earth s surface, and if all the six lakes

communicate with one another freely by canals, or under

ground tunnels, there will be no sensible tides in the lakes

A and A
;
in B and B there will be high water of two feet

above mean level when the moon or anti-moon is in the

zenith, and low water of two feet below mean when the moon
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is rising or setting ;
and at C and G there will be tides rising Correction

and falling one foot above and below the mean, the time of equilibrium&
. theory.

low water being when the moon or anti-moon is in the meri

dian of A, and of high water when they are on the horizon of

A. The simplest way of viewing the case for the extreme

circumstances we have now supposed is, first, to consider the

spheroidal surface that would bound the water at any moment if

there were no dry land, and then to imagine this whole surface

lowered or elevated all round by the amount required to keep
the height at A and A invariable. Or, if there be a large lake

A in any part of the earth, communicating by canals with small

lakes over various parts of the surface, having in all but a

small area of water in comparison with that of A, the tides in

any of these will be found by drawing a spheroidal surface of

two feet difference between greatest and least radius, and, with

out disturbing its centre, adding or subtracting from each radius

such a length, the same for all, as shall do away with rise or

fall at A.

807. It is, however, only on the extreme supposition we have The tides,

made, of one water area much larger than all the others taken

together, but yet itself covering only a small part of the

earth s curvature, that the rise and fall can be nearly altogether

obliterated in one place, and doubled in another place. Taking
the actual figure of the earth s sea-surface, we must subtract a

certain positive or negative quantity a from the radius of the

spheroid that would bound the water were there no land, a

being determined according to the moon s position, to fulfil

the condition that the volume of the water remains unchanged,
and being the same for all points of the sea, at the same time.

Many writers on the tides have overlooked this obvious and

essential principle; indeed we know of only one sentence*

hitherto published in which any consciousness of it has been

indicated.

808. The quantity a is a spherical harmonic function of the

second order of the moon s declination, and hour-angle from

*
&quot;Eigidity of the Earth,&quot; 17, Phil. Trans., 1862.



378 ABSTRACT DYNAMICS. [808.

The tides, the meridiaD of Greenwich, of which the five constant co-

Section of efficients depend merely on the configuration of land and water,
the waters . n 1

., 11-
neglected: and may be easily estimated by necessarily very laborious
corrected

equilibrium quadratures, with data derived from the inspection of good
theory.

maps.

Let as above

r = a(l +u) ........................... (14)

be the spheroidal level that would bound the water were the

whole solid covered ;
u being given by (13) of 804. Thus, if

ffdo- denote surface integration over the whole surface of the

sea, affudo- expresses the addition (positive or negative as the

case may be) to the volume required to let the water stand to

this level everywhere. To do away with this change of volume

we must suppose the whole surface lowered equally all over by

such an amount a (positive or negative) as shall equalize it.

Hence if fi.be the whole area of sea, we have

a =
Affudo-

........................... (15).

And r = r-a = a
jl

+ u - - }fudo}
............... (16),

is the corrected equation of the level spheroidal surface of the

sea. Hence

(17),

where h denotes the height of the surface of the sea at any

place, above the level which it would take if the moon were

removed.

To work out (15), put first, for brevity,

and (13) becomes

tt =T(cos 0-) ........................ (19).

Now let I and X be the geographical latitude and west longitude

of the place, to which u corresponds ;
and ty

and 8 the moon s

hour-angle from the meridian of Greenwich, and her declination.

As is the moon s zenith distance at the place (corrected for

parallax), we have by spherical trigonometry

cos = cos I cos 8 cos (A i/O
+ sin I sin 5 ;
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which gives

3cos2 - 1 = tcos
2Zcos2

5cos2(\
-
i//)+6sinZcosfein5cos5cos(X

-

Hence if we take &, 3$, &amp;lt;3J, 33, (S to denote five integrals depend- The tides,

inr solely on the distribution of land and water, expressed as attraction ofJ
the waters

follows : neglected :

corrected

equilibrium
theory.= -

//cos
2
1 cos 2/Wcr, 15 = //cos

2
1 sin 2Xo?cr,

= --
f/sin cos cos

Ae?&amp;lt;r,
33 = -

//sin cos sin
\d&amp;lt;r,

where of course d&amp;lt;j
= cos IdldX,

we have

(21)*,

m25- 1) } (22).

This, used with (19) and (20) in (17), gives for the full conclu

sion of the equilibrium theory,

h = l T [(cos
2
1 cos 2\ - ^l) cos 2^ + (cos

2
^ sin 2X - 23) sin 2^] cos

2
Si

+ 2ar[(sm ^cos^cosA.- )cosi^+(sin ^ cos ^ sin X- 53
)
sin

i/^]
sin 8 cos 8 I (&quot;**)

+ Jar (3 sin
2 Z- 1 - G) (3 sin

2

8-1) j

in which the value of T maybe taken from (18) for either the moon

or the sun : and 8 and
\fr
denote the declination and Greenwich

hour-angle of one body or the other, as the case may be. In this

expression we may of course reduce the semi-diurnal terms to

the form A cos (2i// e),
and the diurnal terms to A cos (^

- c
).

Interpreting it we have the following conclusions :

809. In the equilibrium theory, the whole deviation of

level at any point of the sea, due to sun and moon acting jointly,

is expressed by the sum of six terms, three for each body.

(1) The lunar or solar semi-diurnal tide rises and falls in Lunar or
&amp;gt; t solar semi-

proportion to a simple harmonic function of the hour-angle from diumaitide.

the meridian of Greenwich, having for period 180 of this angle (or

in time, half the period of revolution relatively to the earth), with

amplitude varying in simple proportion to the square of the cosine

of the declination of the sun or moon, as the case may be, and

therefore varying but slowly, and through but a small entire range.
*
[The numerical values of these integrals \vill be found in a paper by G. H.

Darwin and H. H. Turner in G. H. Darwin s Scientific Papers, Vol. i, p. 323.

(1. H. D.]
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Lunar or
(2) The lunar or solar diurnal tide varies as a simple har-

solardi- v
/

umaitide. monic function of the hour-angle of period 360, or twenty-four

hours, with an amplitude varying always in simple proportion

to the sine of twice the declination of the disturbing body, and

therefore changing from positive maximum to negative, and

back to positive maximum again, in the tropical* period of

either body in its orbit.

Lunar fort- (3) The lunar fortnightly or solar semi-annual tide is a

or
g
soia

y
r

1

^ variation on the average height of water for the twenty-four

tide! lunar or the twenty-four solar hours, according to which there

is on the whole higher water all round the equator and lower

water at the poles, when the declination of the disturbing body
is zero, than when it has any other value, whether north or

south
;
and maximum height of water at the poles and lowest

at the equator, when the declination has a maximum, whether

north or south. Gauss s way of stating the circumstances on

which &quot;

secular
&quot;

variations in the elements of the solar system

depend is convenient for explaining this component of the

Expiana- tides. Let the two parallel circles of the north and south de-
tion of the

. . , ,

lunar fort- clmation of the moon and anti-moon at any time be drawn on

solar semi- a geocentric spherical surface of radius equal to the moon s

tides. distance, and let the moon s mass be divided into two halves

and distributed over them. As these circles of matter gradu

ally vary each fortnight from the equator to maximum declina

tion and back, the tide produced will be solely and exactly the

&quot;

fortnightly tide.&quot;

810. In the equilibrium theory as ordinarily stated there

is, at any place, high water of the semi-diurnal tide, precisely

when the disturbing body, or its opposite, crosses the meridian

of the place ;
and its amount is the same for all places in the

same latitude
; being as the square of the cosine of the latitude,

and therefore, for instance, zero at each pole. In the corrected

* The tropical period is the interval of time between two successive passages

of the tide-raising body through the intersectioii of the orbit of that body

with the earth s equator. In the case of the moon this intersection oscillates,

with a period of 18 years, through about 13 on each side of the first point of

Aries, as the nodes of the lunar orbit regrede on the ecliptic, (see 848 a, b).
In

the case of the sun the intersection is the first point of Aries, which completes

its revolution in 26,000 years.
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equilibrium theory, high water of the semi-diurnal tides may The tides,

be either before or after the disturbing body crosses the meri- SacSonV

dian, and its amount is very different at different places in the neglected:

same latitude, and is certainly not zero at the poles. In the importance
.... . . . ofcorrection

ordinarily stated equilibrium theory, there is, precisely at the for equtii-J
i n i . T . i

brium fort-

time of transit, high water or low water of diurnal tides in nightly and
semi-an-

the northern hemisphere, according as the declination of the nuai tides.

body is north or south
;
and the amount of the rise and fall is

in simple proportion to the sine of twice the latitude, and there

fore vanishes both at the equator and at the poles. In the

corrected equilibrium theory, the time of high water may be

considerably either before or after the time of transit, and its

amount is very different for different places in the same lati

tude, and certainly not zero at either equator or poles. In the

ordinary statement there is no lunar fortnightly or solar

semi-annual tide in the latitude 35 16 (being sin&quot;

1

1/V3),

and its amount in other latitudes is in proportion to the devia

tions of the squares of their sines from the value J. In the

corrected equilibrium theory each of these tides is still the

same in the same latitude, and vanishes at a certain latitude,

and in any other latitudes is in simple proportion to the devia

tion of the squares of their sines from the square of the sine of

that latitude. But the latitude where there is no tide of this Latitude of

evanescent

class is not sin&quot;

1

(1/V3), but siiTVi (1 + &amp;lt;)],
where &amp;lt;& is the

mean value of 3sin^ 1, for the whole covered portion of the

earth s surface. In 848 c below will be found an approximate

evaluation hy means of quadratures of the function (, contri

buted by Mr G. H. Darwin to our present edition. The uncer

tainty as to the amount of land in arctic and antarctic regions

renders this evaluation to some degree uncertain
;
but it appears

in any case that the distribution of the land is such that the

latitude of evanescent fortnightly tide is only removed a little

to the southward of 35 16 . The computations show, in fact,

that this latitude is 34 40 or 34 57
, according to the assumptions

made as to the amount of polar land.

As the fortnightly and semi-annual tides have been supposed

by Laplace* to follow in reality very nearly the equilibrium
* In our first edition we undoubtingly accepted this supposition.
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law, the determination of the latitude of evanescent tide is a

matter of great importance. It is moreover possible that careful

determination of the fortnightly and semi-annual tides at various

places, by proper reductions of tidal observations, may contribute

to geographical knowledge as to the amount of water-surface in

the hitherto unexplored districts of the arctic and antarctic

Spring and
neap tides :

&quot;priming&quot;

and &quot;

lagg
ing.&quot;

Discrepancy
from ob
served re

sults, due
to inertia
of water.

Lunar and
solar in
fluence on
apparent
terrestrial

gravity.

811. The superposition of the solar semi-diurnal on the

lunar semi-diurnal tide has been investigated above as an

example of the composition of simple harmonic motions; and

the well-known phenomena of the &quot;

spring-tides
&quot;

and &quot;

neap-

tides,&quot; and of the
&quot;priming&quot;

and
&quot;lagging&quot;

have been ex

plained ( 60). We have now only to add that observation

proves the proportionate difference between the heights of

spring-tides and neap-tides, and the amount of the priming
and lagging to be much less in nearly all places than estimated

in 60 on the equilibrium hypothesis ;
and to be very different

in different places, as we shall see in Vol. II. is to be expected
from the kinetic theory.

812. The potential expressions used in the preceding in

vestigation are immediately applicable ( 802, 804) to the

hydrostatic problem. But it is interesting, in connexion with

this problem, to know the amount of the disturbing influence on

apparent terrestrial gravity at any point of the earth s surface,

produced by the lunar or solar influence. We shall therefore

still using the convenient static hypothesis of 804 deter

mine convenient rectangular components for the resultant of the

two approximately equal and approximately opposed disturbing

forces assumed in that hypothesis. First, we mayf

remark that

these two forces are approximately equivalent to a force equal

to their difference in a line parallel to that of the centres of

the earth and moon, compounded with another perpendicular

to this and equal to twice either, multiplied into the cosine

of half the obtuse angle between them.

Resolving each of these components along and perpendicular

to the earth s radius through the place, we obtain, by a process,

the details of which we leave to the student, the following results,

which are stated in gravitation measure:
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Vertical component, upwards = -prp (3 cos
2
6 - 1) ... (23 ).

. S^&T jn_

* fluence on
apparent

Horizontal component = 3 -jrj 3̂
sin cos .........

(23&quot;).
gravity.

The direction of this component is towards the point of the

horizon under the moon or anti-moon.

Here, as before, E and M denote the masses of the earth and

moon, D the distance between their centres, a the earth s radius,

and 6 the moon s zenith distance.

Or from the potential expression (12), by taking
~ and

we find the same expressions.

The vertical component is a maximum upwards, amounting to

Mcf

when the moon or anti-moon is overhead; and a maximum
downwards of half this amount when the moon is on the

horizon. The horizontal component has its maximum value,

amounting to
3
Ma3

when the moon or anti-moon is 45 above the horizon. Similar

statements, of course, apply to the disturbing influence of the

sun. For the moon Ma3

/ED
3
is probably equal to about -1 .

J * 83x(60 3) 3j

or r
-L .

: and the corresponding measure of the sun s influ

ence is very approximately (1 +-3-) (2O)
2

l or ^-
J J \ l

83 V 365 y
( GO -

3)3? 39 lxlO 8 *

Hence, considering the lunar influence alone, we see that as

the moon or anti-moon rises from the horizon to the zenith

of any place on the earth s surface, the intensity of apparent

gravity is diminished by about one six-millionth part : and

the plummet is deflected towards the point of the horizon

under either moon or anti-moon, by an amount which reaches

its maximum value, -
2

l

xlo
of the unit angle (57 3), or 0&quot; 017,

when the altitude is 45. The corresponding effects of solar

influence are of nearly half these amounts.

Taking the notation of 808 above, and using the expansion

(20) of that section, we find, from (23 )
of the present, the ver

tical component equal to
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Lunar and

Sln 28 C S
&amp;lt;

X - *)

+ (- sin
2

Q (1-3 sin
2

3)} ............ (23 &quot;).

Further remarking that dhjadl and (^/i/a cos ld\ are respectively
the northward and the westward components of the inclina

tion of the apparent level to the undisturbed terrestrial level,

we find for the southward and eastward components of the

horizontal disturbing force, as given in
(23&quot;),

the following

expressions :

Southward component = f -=
{sin 21 cos

2
8 cos 2

(A.
-

\j/)

2 cos 11 sin 28 cos (X ty)

+ sin 21(1-3 sin
a

8)} ........ (23
iT
) ;

Eastward component =
-| -rrrya {cos I cos

2
8 sin 2

(A. i//)

+ sin Z sin 28 sin (\-\fi} ...... (23
V
).

These formulas show how in any one place the three com

ponents of the lunar disturbing force vary in the course of the

24 hours. They also show how the lunar disturbing force varies

in longer periods when we consider them as affected by the

monthly and fortnightly variations of 8 and D.

Actual tide- 813. Examples of 799 continued. (4) All other circum-
generating . . -n i /^\ i T ^ T -i

influence stances remaining as m Example (2), let the two bodies be not

by method fixed, but let them revolve in circles round their common centre
of eentri- . .

fugai force, of inertia, with angular velocity such as to give centrifugal force

to each just equal to the force of attraction it experiences

from the other.

Let the centre of the earth be origin of rectangular co-ordi

nates, and OZ perpendicular to the plane of the, circular orbits,

and let OX revolve so as always to pass through the disturbing

body. Then, dealing with centrifugal force by the potential

method, as in 794; for the equation of a series of surfaces

cutting everywhere at right angles the resultant of gravity and

centrifugal force, we find

where w denotes the angular velocity of revolution of the two
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bodies round their centre of inertia, and b the distance of this Actual tide-

point from the earth s centre : so that influence

explained
by method

(25).

Hence -^
- wfbx = 0.

Using this in (24), expanded and dealt with generally as (12) in

Example (3), we see that the first power of x disappears; and,

omitting terms of third and higher orders, we have

7 + f (l
+ }

3

-^) + K(*2

+2/) = const. ...... (26).

To reduce to spherical harmonics we have

or in polar co-ordinates

and therefore, as according to our approximation we may take

&amp;lt;D

2a2
for wV2

,
we find [with the notation r = a (1 + u) as above]

, Ma 3x2
r

2 a ,

....(27).

This interpreted is as follows :

The surface of the fluid will be a harmonic spheroid of the

second order [that is
( 799), an ellipsoid differing infinitely

little from a sphere], which we may regard as the result of

superimposing on the deviation from spherical figure investi

gated in 804, another consisting of the oblateness due to

rotation with angular velocity o&amp;gt; round the diameter of the

earth perpendicular to the plane of the disturbing body s orbit.

We may prove this conclusion with less analysis by supposing
the purely static system of Example (3), 804, to rotate, first

with any angular velocity &&amp;gt;,
about any diameter of the earth

perpendicular to the straight line through its centre in which the

disturbing bodies are placed ;
and then supposing this angular

velocity to be just such as to balance the earth s attraction on

the two disturbing bodies, so that the holdfasts by which they
were prevented from falling together may be removed. Then

VOL. n. 25
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it is easy to prove analytically that the effect of carrying either

disturbing body to the other side, and uniting the two, will be

a small disturbance in the figure of the fluid amounting to

some such fraction of the deviation investigated in Example (3)

as the earth s radius is of the distance of the disturber.

814. The purely static system of Example (3), 804, gives
the simplest and most symmetrical foundation for the equili

brium theory of the tides. The kinetic system of Example (4),

813, is indeed not less purely static in relation to the earth,

and is equivalent to an absolutely static ideal system in

which repulsion from a fixed line, on parts of a non-rotating

system, is substituted for the centrifrugal force of the rotating

system. But it is complicated by the oblateness of the fluid

surface produced by the centrifugal force or repulsion. This

oblateness, as we see from 801, would amount to as much as

r bein about 27 8 times the
(a 680

the lunar tide-level for the case of the earth and moon. For the

case of the sun and earth, the corresponding oblateness amounts

only to
a?? x

gii
_

or y^^ooo which is only -A of the ellip-

ticity of the solar tide-level.

Augmenta- 815. When the attraction of the fluid on itself is sensible,

by mutual the disturbance in its distribution gives rise to a counter dis-

ofthe di turbing force, which increases the deviation of the equipotential

water. surfaces from the spherical figure. The general hydrostatic

condition ( 750), that the surfaces of equal density must still

coincide with the equipotential surfaces, thus presents an

exquisite problem for analysis. It has called forth from

Legendre and Laplace an entirely new method in mathematics,

commonly referred to by English writers as &quot;Laplace s co

efficients&quot; or
&quot;

Laplace s Functions.&quot; The principles have been

sketched in the second Appendix to our first Chapter; from

which, and the supplementary investigations of 778 784,

we have immediately the solution for the case in which the

fluid is homogeneous, and the nucleus (being a solid of any

shape, and with any internal distribution of density, subject

only to the condition that its external equipotential surfaces

are approximately spherical) is wholly covered by the fluid.
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The conclusion may be expressed thus: Let p be the density Augmentn-

of the fluid, and let a be the mean density of the whole mass, by mutual
gravitation

fluid and solid. Let the disturbing influence, whether of ex-

ternal disturbing masses, or of deviation from accurate centro- water-

baric ( 534) quality in the nucleus, or of centrifugal force due

to rotation, be such as to render the level surfaces harmonic

spheroids of order i, when the liquid is kept spherical by a

rigid envelope in contact with it all round. The tendency of

the liquid surface would be to take the figure of that one of

these level surfaces which encloses the proper volume. But

in changing its figure, if permitted, it would increase the

deviation of this level surface. The result is, that if the con

straint be removed, the level surface of the liquid in equilibrium

will be a harmonic spheroid of the same type, but of deviation

from sphericity augmented in the ratio of 1 to 1 --.
p

.

(2t + l)cr

Let the potential at or infinitely near the bounding surface be

............................a)

when the liquid is held fixed in shape by a spherical envelope, of

radius a. In these circumstances

r =

is the equipotential surface of mean radius a. If now the bound

ing surface of the liquid be changed into the harmonic spheroid

r = a(l + cS
t) (3),

the potential ( 543) becomes changed from (1) to

3r

and the equipotential surface becomes, instead of (2)

(5).

Hence that the boundary (3) of the liquid may be an equi

potential surface,
3

252
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Augmenta- \
tionof result which gives
by mutual
gravitation
of the dis
turbed
water.

whence

Using this in
(5), and comparing with (2), we prove the pro

position.

stability of 816. The instability of the equilibrium in the case in which

the density of the liquid is greater than the mean density

of the nucleus, already remarked as obvious, is curiously

illustrated by the present result, which makes the deviation

infinite when i = 1 and cr = p. But it is to be remarked that

it is only when the nucleus is completely covered that the

equilibrium would be unstable. However dense the liquid

may be, there would be a position of stable equilibrium with

the nucleus protruding on one side; and if the bulk of the

liquid is either very small or very large in comparison with

that of the nucleus, the figure of its surface in stable equi
librium would clearly be approximately spherical. Excluding
the case of a very small nucleus of lighter specific gravity

(which would become merely a small floating body, not sensibly

disturbing the general liquid globe), we have, in the apparently

simple question of finding the distribution of a small quantity

of liquid on a symmetrical spherical nucleus of less specific

gravity, a problem which utterly transcends mathematical skill

as hitherto developed.

Augmenta- 817. The cases of i = \ and i = 2 give the solutions of the

results by several examples of 799 when the attraction of the liquid on

gravitation itself is taken into account, provided always that the solid is

cuiatedfor wholly covered. Thus [ 799, Example (2)] if the earth and

709. moon were stopped, and each held fixed, the moon s attraction

would still not disturb the figure of the liquid surface from

true sphericity, but would render it eccentric to a greater

degree than that previously estimated, in the ratio of 1 to

1
p/(T. For the earth and sea, p/&amp;lt;r

is about T\, and therefore

the spherical liquid surface would be drawn towards the moon
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by 86 feet, being If times the amount of 70 feet found above Augmenta-
tions of

(803). And the tidal and rotational ellipticities estimated results by

in 8 800, 814, 813 would, on the supposition now made, be gravitation
of water cal-

augmented each in the ratio of 1 to 1 fcr/p ;
or 55 to 49 for cuiatedfor

. examples of

the case of earth and sea. The true correction for the attrac- 709.

tion of the sea, as altered by tidal disturbance, in the equi

librium theory of the tides, must be less than this, as the liquid

does not cover more than about f of the surface of the solid.

To find the true amount of the correction for the attraction of

the water on itself when the whole solid is not covered, even

if the arrangement of dry land and sea were quite symmetrical
and simple (as, for instance, one circular continent and the rest

ocean), belongs to the transcendental problem already referred

to
( 816). It can be practically solved, if necessary, by

laborious methods of approximation; but the irregular bound

aries of land and sea on the real earth, and the true kinetic

circumstances of the tides, are such as to render nugatory any
labours of this kind. Happily the error committed in neglect

ing altogether the correction in question may be safely esti

mated as less than 10 per cent.
(?% being 12 3 per cent.), and

may be neglected in our present uncertainty as to absolute

values of causes and effects in the theory of the tides.

818. But although the influence on the tides produced Local influ-

by the attraction of the water itself as it rises and falls is Safer on
lgl

j. -j n i -j. &quot;f 2.
direction

not considerable even in any one place; it is a manifest, of gravity,

though not an uncommon, error to suppose that the moon s

disturbing influence on terrestrial gravity is everywhere in

sensible. It was pointed out long ago by Robison* that the

great tides of the Bay of Fundy should produce a very sensible

deflection on the plummet in the neighbourhood, and that

observation of this effect might be turned to account for

determining the earth s mean density. But even ordinary

tides must produce, at places close to the sea shore, deviations

in the plummet considerably exceeding the greatest direct

effect of the moon, which, as we have seen ( 812), amounts

to
OQ

1

Q OQO
of the unit angle (57 3). Thus, at a point on

* Mechanical Philosophy, 1804. See also Forbes, Proc. R.S.E., April, 1849.
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Attraction
of high
water on a

plummet
at the sea
side.

or not many feet above the mean sea level, and 100 yards

from low-water mark, a deflection, amounting to more than

5 of the unit angle on each side of the mean verti-
8,000,000

cal, will be produced by tides of five feet rise and fall on each

side of the mean, if the line of coast does not deviate very

much from one average direction for 50 miles on either side,

and if the rise and fall is approximately simultaneous and

equal for 50 miles out to sea. For, a point placed as in the

Vertical
section

through 0.

sketch will, as the water rises from low tide to high tide, ex

perience the attraction of a plate of water indicated in section

by HKK L L. If we neglect the small part of the whole effect

due to the long bar (extending along the coast) shown in section

by HKL, we have only to find the attraction of the rectangular

plate of water by hypothesis of 50 miles breadth from KL,
100 miles length parallel to the coast,

and 10 feet thickness (KL). This will

not be sensibly altered if is precisely

in the continuation of the middle plane

EE (instead of a few feet above it, as

would generally be the case in a con

venient sea-side gravitation observatory),

and the whole matter of the plate were

condensed into its middle plane. But

the attraction of a uniform rectangular plate on a point has,

for component parallel to OE,

J
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and B B are to be taken as at the same distances on one side Attraction
of high

of OE as AA on the other. Hence the preceding expression water on a

plummet at

becomes
side

sea

2pt log z
j= ,

which is equal to 13 44 x pt.

The ratio of this to
f-Trcrr,

the earth s whole attraction on 0, is

3 x 13-4/oZ/47rcrr: which (as t/r is -_i-

Q by hypothesis, and p/&amp;lt;r

is about -2-) amounts to i
. The plummet will therefore,

11 3,580,000

at high tide, be disturbed from the position it had at low

tide, by a horizontal force of somewhat more than 1
J 4,000,000

of the vertical force
;
and its deviation will of course be this

fraction of 57 3, the unit angle.

818 . Since the publication of our first edition the British Gravita-
r

.
tionai Ob-

Association has endeavoured to promote the existence of practical servatory.

gravitational observatories by the appointment of a committee

for determining experimentally the lunar disturbance of gravity.

The Reports for the years 1881 and 1882 contain accounts of

the work which has been done hitherto. In 818 we did not

mean to suggest the seaside as a proper site for a gravitational

observatory, and the investigation of that section renders it

evident that for the purposes in view of the committee it is

essential that the observatory should be remote from the sea-

coast.

The object of the experimenters for the committee, Mr

George and Mr Horace Darwin, being to measure, if possible,

the attraction of the moon, and thus to throw light on the

elastic yielding of the earth s mass (see 837 et seq.), care was

taken by them to eliminate as far as possible the effects of

tremors, either local and seismic. The experiments were, and

are still being, carried out at Cambridge, but notwithstanding

all the precautions taken to shield the instrument (a pendulum

hung in fluid) from disturbance, it was found that the agitation

of the soil was incessant. There is strong evidence that this

agitation is wholly independent of the tremors produced by
traffic in the town, for (amongst other proofs) it appeared that

there were periods, lasting during several days, of abnormal
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agitation and of abnormal quiescence. The experimenters
servatory. found that superposed on this minute agitation there is a

diurnal oscillation of level of some regularity ;
and that super

posed on that again there are continuous changes of level

lasting over many weeks. The experiments afford no evidence

as to the extent of land over which these changes range ;
and as

the work is still in progress, we should have made no allusion

to it here, but that the subject has been attacked from an

entirely different point of view, and at earlier dates, by a

number of other observers. The general character of the dis

turbances noted by these other observers agrees in every par
ticular with what is described by the Darwins, and thus we are

compelled to believe that none ofthem were noting a purely local

effect. As most of the other experimenters have had in view

the observation of minute earthquakes, their instruments have

in general been made excessively sensitive to tremor, and the

selection of appropriate sites has been rendered very difficult.

We may mention the following instances of observations

which agree in character with those of which we have

spoken, viz. by D Abbadie in Brazil and Ethiopia with spirit

levels, and on the Pyrenees by reflexion from mercury ; by
Plantamour at Geneva with spirit-levels ; by Zollner at Leipsig

with &quot; a horizontal pendulum
&quot;

; by Bouquet de la Grye at

Campbell Island in the S. Pacific Ocean, with a pendulum.
But the observations to which we would especially draw at

tention are those of the Italians, who have far excelled in zeal

all the other nations combined. This has probably been due

to the presence in their country of active volcanoes, so that

attention has been drawn to the science of earthquakes. In

Italy we find Rossi, Bertelli, Palmieri, Mocenigo, Malvasia,

Agostini, Galli and many others making continuous obser

vations in many parts of the country for some years past.

Their results are being recorded in the Bulletino del Vulcanismo

Italiano*. Milne, Ewing, and Gray have worked in Japan in

the same field, but to note all those who have attended to

Seismology would be beyond the scope of our present remarks.

* One of the most interesting points is the use of the microphone for the

detection of telluric disturbance.
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We here only wish to draw attention to the subject of the Gravita-

slower changes in the direction of gravity relatively to the earth s servatory.

surface, and to shew that although such results of gravitational

observation, as were contemplated by the British Association in

the appointment of a Committee, may probably be impossible,

yet an important method appears to be initiated for discovery

with regard to the mechanical constitution of the upper strata

of the earth. For this end it is essential that instruments

should be improved, for which there is much scope, and that,

following the Italian example, the observations should be

simultaneous over large tracts of country.

819. Recurring to the case of p = &amp;lt;r,
we learn from 817 ^fg^011

that a homogeneous liquid in equilibrium under the influence
{{J

eory fu,

of centrifugal force, or of tide-generating action, has 2J times

as much ellipticity as it would have if mutual attraction between

the parts of the fluid were done away with
( 800), and gravity

were towards a fixed interior centre of force. For a homogeneous

liquid of the same mean density as the earth, rotating in a time

equal to the sidereal day, the ellipticity is therefore ^J? , being

2| times the result, yj^, which we found in 801. This

agrees with the conclusion for the case of approximate spheri

city, which we derived
( 775) from the theorem of 771,

regarding the equilibrium of a homogeneous rotating liquid.

But even for this case Laplace s spherical harmonic analysis is

most important, as proving that the solution is unique, when

the figure is approximately spherical; so that neither an

ellipsoid with three unequal axes, nor any other figure than

the oblate elliptic spheroid of revolution, can satisfy the hydro
static conditions, when the restriction to approximate sphericity

is imposed. Our readers will readily appreciate this item of

the debt we owe to the great French naturalist, when we tell

them that one of us had actually for a time speculated on three

unequal axes as a possible figure of terrestrial equilibrium.

820. As another example of the result of 817 for the case

i = 2, let us imagine the earth, rotating with the actual angular

velocity, to consist of a solid centrobaric nucleus covered with

a .thin liquid layer of density equal to the true density of the
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Application upper crust, that is, we may say, half the mean density of the

theory of nucleus. The ellipticity of the free surface would be
the earth s

figure.
- -__ _

580 1-f x 406

Or, lastly, let it be required to find the density of a super
ficial liquid layer on a centrobaric nucleus which, with the

actual angular velocity of rotation, would assume a spheroidal

figure with ellipticity equal to ^^, the actual ellipticity of the

sea level. We should have

which gives p
= 819 x &amp;lt;r.

821. Bringing together the several results of 801, 817, 819,

for a centrobaric nucleus revolving with the earth s angular

velocity, and covered with a thin layer of liquid of density p,

the mean density of the whole being o-, we have

(1) for^
= 0, e = -

5^,

(2) =, e-jfr,

(3)
=

i, e-ife,

(4)
= 819, fi-ifc,

(5)
= 1, e =

dn?&amp;gt;

where e denotes the ellipticity of the free bounding surface of

the liquid. The density of the earth s upper crust may be

roughly estimated as the mean density of the entire mass,

and is certainly in every part less than 819 of this mean

density. The ellipticity of the sea level does not differ from

^F by more than 2 or 3 per cent., and is therefore decidedly

too great to be accounted for by centrifugal force, and ellipticity

in the upper crust alone, on the hypothesis that there is a rigid

centrobaric nucleus, covered by only a thin upper crust with
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surface on the whole agreeing in ellipticity with the free liquid

surface. It is therefore quite certain that there must be on the Observation
shows so

whole some degree of oblateness in the lower strata, in the great an

same direction as that which centrifugal force would produce

if the mass were fluid. There is, as we shall see in later
JJJJf*^ of

&quot;

volumes, a great variety of convincing evidence in support of^ only in

the common geological hypothesis that the upper crust was ^S^IlSt
at one time all melted by heat. This would account for the

terioHayers

general agreement of the boundary of the solid with that of
Density!

fluid equilibrium, though largely disturbed by upheavals, and

shrinkings, in the process of solidification which (App. D.) has

probably been going on for a few million years, but is not yet

quite complete (witness lava flowing from still active volcanoes).

The oblateness of the deeper layers of equal density which we

now infer from the figure of the sea level, the observed density

of the upper crust, and Cavendish s weighing of the earth as

a whole, renders it highly probable that the earth has been at

one time melted not merely all round its surface, but either

throughout, or to a great depth all round.

822. We therefore, as our last hydrostatic example, proceed Equilibrium
,. . - , ,. ., of rotating

to investigate the conditions of a heterogeneous liquid resting spheroid of
hptGroffPiiG-

on a rigid spherical centrobaric core or nucleus, and slightly pus liquid,

disturbed, as explained in 815, by attracting masses fixed gated.

either externally or in the core (among which, of course, must

be included deviations, if any, from a rigorously centrobaric

distribution in the matter of the core).

For any point (r, 0,
&amp;lt;j&amp;gt;)

in space let

N be the potential due to the core,

V ,, undisturbed fluid,

Q disturbing force,

U disturbance in the distribu

tion of the fluid.

Thus the whole potential at the point in question isN + V when

the fluid is undisturbed, and N + Q + V + U when the disturbing

force is introduced and equilibrium supervenes. Let also p be

the density of the undisturbed fluid at
(r, 0,

c/&amp;gt;) (which of course

would vanish if the point in question were situated in any other
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Equilibrium
of rotating
spheroid of

heterogene
ous liquid,
investi

gated.

part of space than that occupied by the fluid) ;
and let p + zzr be

the altered density at the same point (r, 6,
&amp;lt;f&amp;gt;)

when the fluid

rests under the disturbing influence. It is to be noticed that

N, V, p are functions of r alone; while Q, V, tzr are functions of

r, 0, 4.

Let now Sr be an infinitely small variation of r. The density

of the liquid at the point (r 4- Sr, 0, &amp;lt;)

will be p + OT + -=- (p+?r)8r,

or simply

as VT is infinitely small by hypothesis. If we equate this to p we

have dp ~ ~

Spheroidal
surface
of equal
density.

and deduce

Expression
of incom-

pressibility.

dpjdr

for the equation expressing the deviation from the spherical

surface of radius r, of the spheroidal surface over which the

density in the disturbed liquid is p. The liquid being incom

pressible, the volume enclosed by this spheroidal surface must be

equal to that enclosed by the spherical surface, and therefore,

if da- denote an element of the spherical surface, and // integra

tion over the whole of it,

.......................... (2).

(3).

Hence, by (1), as is independent of 0,

Now, as before for density, we have for the disturbed potential

at (r + Sr, 0, &amp;lt;)

or, because Q + U is infinitely small,

And, therefore, to express that the spheroidal surface correspond

ing to (1), with r constant, is an equipotential surface in the

disturbed liquid, we have
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Q+ U- - v+N+ V=F(r) .............. (4), Hydrostatic
equation.

which
( 750) is the equation of hydrostatic equilibrium. In this

equation we must suppose N and p to be functions of r, and Q a

function of r, 6, &amp;lt;;
all given explicitly: and from p we have, by

putting i = 0, in (15) and (16) of 542,

=TT( t
r

r
f

p dr+ - frVc^ ................ (5),
\Jr

^
r)a ^J V &quot;

Equilibrium
of rotating
spheroid
of hetero-

where p is the value of p at distance r from the centre, and K seneous

the radius of the outer bounding surface of the undisturbed fluid,

and a that of the fixed spherical surface of the core on which it

rests. To find F + U, following strictly the directions of 545,

we add the potential of a distribution of matter with density p + TS

through the space between the spherical surfaces of radii a and

C to that of the shell B of positive and negative matter there

defined. Let the thickness of the latter at the point (r, 6,
&amp;lt;f&amp;gt;)

be

called A, being the value of Sr at the surface; and let q denote

its density, being the surface value of p. Then, subtracting the

undisturbed potential F, we have

if as usual JD denote the distance between the points (r, 0, &amp;lt;),

(/, ,
&amp;lt;

),
and the accented letters denote the values of the

corresponding elements in the latter
;
and if

[ ]
denote surface

values and integration.

Let us now suppose the required deviation of the surfaces of Part of the

equal pressure density and potential to be expressed as follows due to ob-

in surface harmonics, of which the term R disappears because

of (2):-

for the interior of the fluid, Sr =^ + R
2
+ R

3
+ etc., )

and for the outer bounding surface, h = l&j + Jt
2
+ i&

3 + etc.
[
^

Hence by (1) w=B-(51
+ 5, + i?

i
+ etc.) (8).
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developedin Using this in (6) according to 544, 542, 536, we have
harmonics.

1 2i + l

where R! denotes the value of R
i
from the point (r t 0,

&amp;lt;j&amp;gt;)

instead

of (r, 0, &amp;lt;/&amp;gt;).

To complete the expansion of the hydrostatic equation (4) we

may suppose the harmonic expression for Q to be either directly

given, or be found immediately by Appendix B. (52), or by

(8) of 539, according to the form in which the data are pre

sented. Thus let us have

Harmonic ,-= =i

inCHt Ol .
^

i i I

disturbing
potential.

according to the notation of App. B. (37) and (38), A*\ B 1

*

denoting known functions of r. Using now this and (8) in (4),

we have

i=i (=o i * dr

Hence : first, for the terms of zero order

A (0) + N + V = F(r) ... (12),
o

which merely shows the value of F(r], introduced temporarily in

(4) and not wanted again : and, by terms of order i,

~1 T J r
T

dr f

J a dr
^

*

=3* (Jl^cos s&amp;lt;J&amp;gt;

+ (s} sin
8&amp;lt;f&amp;gt;)

!

}

(13).
=o

*

Equation of Lastly, expanding It, (as above for the i term of Q) by App. B.

equilibrium
for general (37), let US have
harmonic
term: * * M j.\ /~vd) /I A.\

=o
*

where uw ,
v(t} are functions of r, to the determination of which the

problem is reduced. Hence equating separately the coefficients

of (f) cos
s&amp;lt;, etc., on the two sides, and using u. to denote any
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one of the required functions t*
(

w
,
v \ and A

i any of the given

functions A w B (

\ and
&amp;lt;, u, the values of u

t
for r = / and r = r

. , i w.i regarded
respectively, we nave as a func

tion of r.

or, as it will be convenient sometimes to write it, for brevity, ar^uj)
- At

where &amp;lt;r

4
denotes a determinate operation, performed on u any

function of r, continuous or discontinuous. To reduce (15) to a

differential equation, divide by r1

, differentiate, multiply by r
2t+2

,

and differentiate again. If, for brevity, we put

-^(N + V)^r^ ........................ (16),
*r rotating

the result is spheroid of

hetero-

a linear differential equation, of the second order, for u
it

with Differential

coefficients and independent terms known functions of r. The STinte^

general solution, as is known, is of the form

a. ....................... (18),

where a is a function of r satisfying the integral equation

ov (a)
= A

{
............................ (19) [(15) repeated];

C and are two arbitrary constants, and P and P are two

distinct functions of r.

Equation (15) requires that (7 = and C&quot;
=

;
in other words,

tt
i}

if satisfying it, is fully determinate. This is best shown by

remarking that if, instead of (15), we take

&amp;lt;r

i (u)
= A

i
+ Kri + K r-

i
-

1

................... (20)

where K, K are any two constants, these constants disappear in

the differentiations, and we have still the same differential

equation, (17) : and that the two arbitrary constants G and C Determina-

of the general solution (18) of this are determined by (20) when stantsto

any two values are given for K and K . In fact, the expression therequired

(18), used for u
t ,
reduces (20) to

solution&amp;lt;

i- 1
.............. (21),

which shows that &amp;lt;r

t (P) and &amp;lt;r

t (P )
cannot either of them be
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Determina
tion of con
stants to

complete
the required
solution.

Introduc
tion of the
Newtonian
law of force.

Simplifica
tion by in

troducing
the New
tonian law
of force.

zero, and that they must be distinct linear functions of r* and

r&quot;

1
&quot; 1

,
and determines C and C .

Thus we see that whatever be A
t
we have, in the integration

of the differential equation (19), and the determination of the

arbitrary constants to satisfy (15), the complete solution of our

problem.

Unless it is desired, as a matter of analytical curiosity, or for

some better reason, to admit the supposition that N is any

arbitrary function of r, it is unnecessary to retain both
\j/
and p

as two distinct given functions. For the external force of the

nucleus, or that part of it of which N is the potential, being by

hypothesis symmetrical relatively to the centre, it must in

nature vary inversely as the square of the distance from this

point ;
that is to say, dN _ /* . .

dr r
2

&quot;

&quot;*\ /

p being a constant, measuring in the usual unit
( 459) the

mass of the nucleus. And by (5)

From this, with (22) and (17), we have

, . dp d&amp;gt; &amp;lt;fy

which gives 47rp
=
-^- and ^ - = r ^ + 4^ ...... (25).

Using this last in (17), and reducing by differentiation, we have

l d

Another form, convenient for cases in which. the disturbing

force is due to external attracting matter, or to centrifugal force

of the fluid itself, if rotating, is got by putting, in (17),

r- *X =
, (

27
)

and reducing by differentiation. Thus

With this notation the intermediate integral, obtained from (15)
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by the first step of the process of differentiating executed in the Differential

, ... , . equation for
order specified, gives proportion-

ate devia-
tion from

Important conclusions, readily drawn from these forms, are Equili-

that if Q is a solid harmonic function (as it is when the rotating

disturbance is due either to disturbing bodies in the core, or in of hetero-

the space external to the fluid, or to centrifugal force of the

fluid rotating as a solid about an axis); then (1) e
iy regarded as Layers of

positive, and as a function of r, can have no maximum value, f&amp;lt;wtpnJ

nu

although it might have a minimum
;
and (2) if the disturbance

is due to disturbing masses outside, or to any other cause (as

centrifugal force) which gives for potential a solid harmonic of

order i with only the r* term, and no term r&quot;*

1

,
e
i
can have no

minimum except at the centre, and must increase outwards

throughout the fluid.

To prove these conclusions, we must first remark that
if/

necessarily diminishes outwards. To prove this, let n denote

the excess of the mass of the nucleus above that of an equal
solid sphere of density s equal to that of the fluid next the

nucleus. Then we may put (24) under the form

*-p )r&quot;dr
+ ............. (30).

For stability it is necessary that n and s p be each positive ;

and therefore the last term of the second member is positive,

and diminishes as r increases, while the second term of the same

is negative, and in absolute magnitude increases, and the first

term is constant. Hence ^ diminishes as r increases. Again,
when the force is of the kind specified, we must [App. B. (58)]

have A
t
= Ki* + K r&quot;

-
1

....................... (31),

and therefore the second member of (28) vanishes. Hence if,

for any value of r, dejdr = 0,

d\ 2 (i
-

1) d .

for the same, _&amp;lt; = - -^ J. e
t

-^
log f,

and is therefore positive, which proves (1). Lastly, when the

force is such as specified in (2), we have A^Kr* simply, and

VOL. II. 26
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at
r

edevia-

n~
therefore the second member of (29) vanishes. This equation

ofcentri
CaSe then gives, for values of r exceeding a by infinitely little,

fugal force, -, ,

or of force ae
i

a i .

from with- Tr
= ~

&i rfr g *
out.

which is positive. Hence e
{
commences increasing from the

nucleus. But it cannot have a minimum (1), and therefore it

increases throughout, outwards.

Sutnfu ai
^ When the disturbance is that due to rotation of the

force.
liquid, the potential of the disturbing force is ^^(af+y

2

), which

is equal to a solid harmonic of the second degree with a con

stant added. From this it follows [ 822, 779] that the sur

faces of equal density are concentric oblate ellipsoids of revolu

tion, with a common axis, and with ellipticities diminishing
from the surface inwards.

We have, in (10) of last section,

This gives by (7) and (14),

Hence r + Sr = r ( 1 + -2 (

2

0)

)
= r \l + -2

(
- cos

2

0)1
\ r / L r J

...(1),

neglecting terms of the second order because
o&amp;gt;,

and therefore

also ujr, are very small.

Thus the sphere, whose radius was r, has become an oblate

ellipsoid of revolution whose ellipticity [
822 (27)] is

Its polar diameter is diminished by the fraction ujr or | e
2,

and its equatorial diameter is increased by -|e8 ;
the volume

remaining unaltered.

In order to find the value of w
a ,

we must have data or

assumptions which will enable us to integrate equation (15).

These may be given in many forms
;
but one alone, to which we

proceed, has been worked out to practical conclusions.
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824. To apply the results of the preceding investigation to Laplace s

the determination of the law of ellipticity of the layers of caSfaw^f&quot;

equal density within the earth, on the hypothesis of its within the

original fluidity, it is absolutely essential that we commence

with some assumption (in default of information) as to the

law which connects the density with the distance from the

earth s centre. For we have seen
( 821) how widely different

are the results obtained when we take two extreme suppo

sitions, viz., that the mass is homogeneous; and that the density

is infinitely great at the centre. In few measurements hitherto

made of the Compressibility of Liquids (see Vol. II., Properties

of Matter) has the pressure applied been great enough to

produce condensation to the extent of one-half per cent. The

small condensations thus experimented on have been found,

as might be expected, to be very approximately in simple

proportion to the pressures in each case
;
but experiment has

not hitherto given any indication of the law of compressibility

for any liquid under pressures sufficient to produce considerable

condensations. In default of knowledge, Laplace assumed, as an

hypothesis, the law of compressibility of the matter of which,

before its solidification, the earth consisted, to be that the

increase of the square of the density is proportional to the in- Assumed

crease of pressure. This leads, by the ordinary equation of tweenSen
e

-&quot;

hydrostatic equilibrium, to a very simple expression for the law pressure,

of density, which is still further simplified if we assume that

the density is everywhere finite.

Neglecting the disturbing forces, we have
( 822, 752)

dp = pd(V+N) (1).

But, by the hypothesis of Laplace, as above stated, k being some

constant dp = kpdp (2).

Hence kp + C = V+N

or, by 822 (5),
= 4*- t*r p dr + ft-VcTf * ^ .

Jr r J a r

Multiplying by r, and differentiating, we get

, d
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Laplace s

hypotheti
cal law of

density
within the
earth.

Law of

density.

Determina
tion of ellip-
ticities of

surfaces
of equal
density.

and

If we write 47r/&= l//c*,
the integral may be thus expressed

If we suppose the whole mass to be liquid, i.e., if there be no

solid core, or, at all events, the same law of density to hold from

surface to centre, G must vanish, else the density at the centre

would be infinite. Hence, in what follows, we shall take

F . T
sin -.

r K .(3).

With this value of p it is easy to see that

/V2pW = -KV^ (4),
Jo dr

the common value of these quantities being

FK (sin cos -
)

.

\ K K K/

We are now prepared to find the value of u
a
in 823, upon

which depends the ellipticity of the strata. For (15) of 822

becomes, by (23) of that section and the late equation (4),

where // is the mass of fluid, following the density law (3), which

is displaced by the core
/*,

and q is the surface density. In the

terrestrial problem we may assume // = /x,
and of course a = 0.

For simplicity put

dp
T
dr Ua ~ V

then divide by r8 and differentiate, and we have

dr

Multiply by r6
,
and again differentiate

;
the result is

(6),
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The integral of this equation is known to be Laplace s

hypotheti-

K3
1\ fr \ 3 fr \1 callawof

T
S

K
2
/ \K ) KT \K )

so that u
a is known from (6). Now we have already proved that Conse-

u
a
increases from the centre outwards, so that we must have as regards

(7 =0, for otherwise u
2
would be infinite at the centre. Thus, of surfaces

dropping the suffix
2
to the symbol e for brevity, we have density.

3 1\
~2
--

a
r K)

tan ---
K K

Now let = -
.. ...(9

1
).

K

We may thus write (9) as follows :

C (3 1 )
e = -

The constants are, of course, to be determined by the known
values of the ellipticity of the surface and of the angular velocity

of the mass.

Now (5) becomes, at the surface,

f +dp .

r u^ dr =g J

We may next eliminate p, dp/dr, and q, being the surface value

of p, by means of (3) (4), (6), and (8), and substitute everywhere
re for u

a
. Also, if m be the ratio (^-3-) of centrifugal force to

gravity at the equator, w is to be eliminated by means of the

equation
ro,

8

47r
fr

-3- pr*dr
* Jo

from which p is to be removed by (3). By the help of these

substitutions (10) becomes transformed as follows:

4-n-Fs
(r.

. r . 47rO ft 3 r/3 IN . r 3 r~\ T- rsm-^r+- r r
3 -

2
- -

,) sin - - cos - \dr* 7o ^ 5r JQ [_\r
2

K
8
/ K /cr

/cj

f
/

7

t
. r , 4:7rF t

r sm -c?r + --resin-.

If we put tan r/* = t, and r//c = ^, so that is the surface value
of $, the integrated expression, divided by 7rFeK

2

co&6/t. with
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(7 eliminated by (9&quot;),
becomes

[824

Hence at once

5m
.(11).

fi

If we put 1 - z for -
,

i. e., for ,
this becomes somewhat

^ tan t/K

simpler, and may be written

5m 4

Ellipticity
of internal
stratum.

The mean density of the sphere comprised within the radius

r is

, {sin (T/K])_- (T/K) cos (r/K)} _ 3F f
sin & - S cos

&| ^

/;

Let p be the mean density of the sphere comprised within this

radius r, and p, as before, the density at the stratum denned by

the radius r. It may be noted in passing that q and q are the

values of p and p corresponding to r = r.

Then,
) noix

I
...................

(2)&amp;gt;

.- sin 5- = ----r- .

If we put / for the ratio of the mean density of this sphere to

the density at its bounding surface, we have

Substituting in (9
U
)

Then writing for ^ its value r/K, we have

3(71 A 1
1 -

Since 3C/^ is constant, it follows that (r)/(l
-

Iff) is the same

for all the strata of equal density. If therefore f be the surface
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value offt
that is to say the ratio qjq of the mean density to the Laplace s

surface density of the whole earth, a quantity which may be cai law of

determined by experiment, within the
earth.

er
2

fr
2

... Ellipticity
of internal_ _ .

l-l/f 1-1/f stratum.

This formula gives the ellipticity of any internal stratum accord

ing to the Laplacian theory.

It may be also reduced to another form which is perhaps
rather curious than important, as follows :

Differentiate (12
1

) logarithmically with regard to S, and we

d
have _
Then by (12

11

)

, . dS dr
And since - =

$ T

I /_ 1\ i &amp;lt;*

,1 N
d

P (
l

-/) ~*Jdr &amp;lt;

lo
*&quot; &amp;gt;

= -W) log p

Hence (12
m

)
shows that e varies as

Thus we may state verbally that the ellipticity of any internal

stratum varies as the rate of decrease, per unit increase of area

of the stratum, of the logarithm of the mean density of the

sphere comprised within that stratum*.

The formula (12) for 5wi/2e may now be more simply ex

pressed. Attributing to f and their surface values f and 0,

we have from
(12&quot;)

q / /)
o EatioofU Z mean to

surface

density.

From this equation 6 may be found by approximation, and then

(12) gives t in terms of known quantities. In fact, it becomes

5m__f^_3~

* This and the preceding mode of expressing the ellipticity of an internal

stratum are taken (with changed notation) from a paper by Mr Gr. H. Darwin
in the Messenger of Mathematics (Vol. vi.), 1877, p. 109.
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Laplaoe 3

hypotheti
cal law of

density
within the
earth.

Ellipticity
of strata
of equal
density.

From (13) and (14) the numbers in columns iv. and v. of the

following table are easily calculated. Column vii. shows the

ratio of the moment of inertia about a mean diameter, on the

assumed law of density, to what it would be if the earth were

homogeneous :

*4
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and when 6 is infinitely nearly equal to 180

Sir i

Ellipticity
of strata
of equal
density.

.(2).

We see from (1) and (2) that as 6 ranges from zero to 180, f

increases from unity to infinity, and 5m/2e from 2 to J?r
2

.

Intermediate values of these functions, computed from the

formulae of 824, are given in the following table :

3- or 6

in degrees.
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Ellipticity
of strata
of equal
density.

To determine the ellipticity of an internal stratum we write

(12
in

)
824 in the following form :

/. / 9 \

FTT/F (o) -

We must in (3) take & as the same fraction of 6, as r, the

radius of the stratum in question, is of r the earth s mean

radius. Thus if for example, r = T
5
^r, and if (as is probable in

the case of the earth) ( = 2-1, 0=144, we must take 3-= 60.

The table then shows that S = 60 gives /= 1-0817. By sub

stitution in (3) we get e=
1 .^Q4 e; which with t = -

s^Tt gives

Thedistri- In the cases of those planets which have satellites, m and

deSyfn e- Jm are determinable from observation and from the theory

SaTura!
UUd

of the satellites ;
so that 5m/2e is determinable. This function

being known, the corresponding value of I is determinable from

the table, or by direct computation. For example, Mr G. H. Darwin

has shown that in the case of Jupiter, where 5m/2e is 3 2646, we

must have f = 68, = 179 11 20&quot;,
and e= 1/16-022*. Different

data, perhaps equally probable, give somewhat different results,

but in all cases the physical conclusion is that the superficial den

sity of the visible disk of Jupiter is very small compared with the

mean density a conclusion which appears to agree well with

the telescopic appearance of that planet. A similar application

to the planet Saturn points to a similar result, but the conclu

sion is less certain on account of the great uncertainty in the

data.

Dynamical 825. The phenomena of Precession and Nutation result

prSis/on from the earth s being not centrobaric ( 534), and therefore
and IS uta- , . ,. f
tion, attracting the sun and moon, and experiencing reactions from

them, in lines which do not pass precisely through the earth s

centre of inertia, except when they are in the plane of its

equator. The attraction of either body transferred ( 559, c)

from its actual line to a parallel line through the earth s centre

of inertia, gives therefore a couple which, if we first assume,

for simplicity, gravity to be symmetrical round the polar axis,

* In the Mec. Cil. (vin. vii. 23) Laplace uses values of m and t which

make 5m/2e greater than |ir
2

. His determination of the Precessional Constant

of the planet is thus vitiated.
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tends to turn the earth round a diameter of its equator, in the

direction bringing the plane of the equator towards the dis-
Recession

turbing body. The moment of this couple is [ 539 (14)]
on.

equal to
00

. .......... (14),

where 8 denotes the mass of the disturbing body, D its dis

tance, and 8 its declination ;
and C and A the earth s moments

of inertia round polar and equatorial diameters respectively.

In all probability ( 796, 797) there is a sensible difference

between the moments of inertia round the two principal axes

in the plane ( 795) of the equator: but it is obvious, and

will be proved in Vol. II., that Precession and Nutation are the

same as they would be if the earth were symmetrical about an

axis, and had for moment of inertia round equatorial diameters,

the arithmetical mean between the real greatest and least values.

From (12) of 539 we see that in general the differences of the

moments of inertia round principal axes, or, in the case of

symmetry round an axis, the value of C A, may be deter

mined solely from a knowledge of surface or external gravity,

or [ 794, 795] from the figure of the sea level, without

any data regarding the internal distribution of density.

Equating 539 (12) to 794 (17), in which, when the

sea level is supposed symmetrical, F
2 (0, &amp;lt;)

becomes simply

e
(-g-

cos
2

0), we find

Kfv2 C1 A&quot;

(t
- io a - c s2

*&amp;gt;

= tV^ (*
- *

*).

whence C - A =
fftft

9

(e
-
Jw) .................... (15).

Similarly we may prove the same formula to hold for the real

case, in which the sea level is an ellipsoid of three unequal axes,

one of which coincides with the axis of rotation; provided c

denotes the mean of the ellipticities of the two principal sections

of this ellipsoid through the axis of rotation, and A the mean of

the moments of inertia round the two principal axes in the

plane of the equator.
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^^ ^e angu^ar accelerations produced by the disturbing
a
the

n
d?s-

couples are
( 281) directly as the moments of the couples,

tn?eartn s

f an(^ inversely as the earth s moment of inertia round an equa-

SirfacJ
hile torial diameter. But the integral results, observed in Precession

and Nutation, would, if the earth s condition varied, vary

directly as C A, and inversely as C. We have seen
( 794)

that if the interior distribution of density were varied in

any way subject to the condition of leaving the superficial,

and consequently ( 793) the exterior, gravity unchanged,
C A remains unchanged. But it is not so with C, which

will be the less or the greater, according as the mass is more

condensed in the central parts, or more nearly homogeneous
to within a small distance of the surface : and thus it is that a

comparison between dynamical theory and observation of Pre

cession and Nutation gives us information as to the interior

distribution of the earth s density (just as from the rate of

Precession acceleration of balls or cylinders rolling down an inclined

mat?&amp;lt;m as&quot; plane we can distinguish between solid brass gilt, and hollow

tributionof gold, shells of equal weight and equal surface dimensions);
mass. while no such information can be had from the figure of the

sea level, the surface distribution of gravity, or the disturbance

of the moon s motion, without hypothesis as to primitive fluidity

or present agreement of surfaces of equal density with the

surfaces which would be of equal pressure were the whole

deprived of rigidity.

The con- 827. But we shall first find what the magnitude of the

Precession terrestrial constant (CA)/C of Precession and Nutation would

fromLa- be, if Laplace s were the true law of density in the interior of
law

the earth; and if the layers of equal density were level for the

present angular velocity of rotation. Every moment of inertia

involving the latter part of this assumption will be denoted by

a black-letter capital.

The moment of inertia about the polar axis is, by 281,

&amp;lt;

= 2 P f

*

i

n

pr
2
sin BdvdBd^ . r

2
sin

2
0,

Jo Jo Jo

the first factor under the integral sign being an element of the

mass, the second the square of its distance from the axis.
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For the moment of inertia about another principal axis The con-

(
which may be any equatorial radius, but is here taken as that Precession

lying in the plane from which
&amp;lt;f&amp;gt;

is measured), we have from La
place s law.

& = 2 T /

*

f

&quot;

pi-
2
sin 6drdOd^ . r

2

(1
- sin

2
sin

2

&amp;lt;).

Jo Jo Jo

Now, by 823, we have

r = r[l+e(|.-cos
2

0)],

where r denotes the mean radius of the surface of equal density

passing through r, 0, cf&amp;gt;
; whence

r*dr = \
d
*-dr = r

4dr + (
- cos

2

0)
~ (r

5

e) dr.
Cut* L//*

Let
f .- - T

and

Then = 2 f P
77

sin
3

0&amp;lt;?0&amp;lt;fy [JT +^ (J
- cos

2

0)]

or, if we put as before 6 = -
,

= tan 6,
K

or C = %irK nearly (17).

fin
rZir

/ *l= .2 I I sin Odvdcf) \IL +K} (-g-
cos

2

0)1 (sin
2
^ 1 +sin 8

$sin2
i

Jo JQ

= TV^i (18).

Now we have

Again JT,
- p (r e) c?r = rt? - r5

6 dr,

and this, by (10) of last section, becomes

^ ................... (19).
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The con
stant of

Precession
deduced
from La-

place sLiivr.

Thus, finally,

.(20)

.(21).

From these formulae the numbers in Column vi. of the table in

824 were calculated. By (18) and (19) we see that

(22),

which agrees, as it ought to do, with (15) of 825.

A comparison of (21) and (22) then shows that

(2 3).

Comparison 828. From the elaborate investigations of Precession and

hypothesis Nutation made by Le Verrier and Serret, it appears that the

Nation!
ser &quot;

true value of (C- A}jC is, very approximately, 00327*. This,

according to the table of 824, agrees with
(&amp;lt; -&)/# for/= 2:1,

which gives t = ^. These are (792, 796, 797) about the

most probable values which we can assign to these elements

by observation. Thus, so far as we have the means of testing it,

Laplace s hypothesis is verified.

The com- 829. But, as a further check upon Laplace s assumption, it

mvo!ved
lty

is necessary to inquire whether the results involve anything

thill
yp &quot;

inconsistent with experimental knowledge of the compressi

bility of matter under such pressures as we can employ in the

laboratory. For this purpose the first column has been added

to tbe preceding table. From it may be deduced the compres

sibility of tbe upper stratum of liquid matter, which composed

the crust of the earth, required by the assumed law of density,

for the respective values of 6. In fact, the numbers in Col. i.

are those by which the earth s radius must be divided to find

* Annales de VObservatoire Imperial de Paris, 1859, p. 324.
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the lengths of the modulus of compression ( 688) of the upper- The com-

most layer of fluid, according to the surface value of gravity.

thesis.

We have, by 824 (3),

_
F . r dq _ F(sm(r/K) cos

(r/*)|
^&quot;r K dr r

\
r K y

\ ldq~\ If. 0\
whence, at the surface, d\

= ~\t)
The corresponding numbers for several different liquid and

solid substances are as follows :

Alcohol . . . 37

Water . . 29

Mercury . 27
Jggjfj

Glass . 5-0 m^fperi

Copper . . 8-1 data-

Iron . . . . . 4-1

Melted Lava, by Laplace s law, withy*= 2 1 4 42

This comparison may be considered as decidedly not adverse

to Laplace s law, but actual experiments on the compressibility

of melted rock are still a desideratum.

830. In 276 it was proved that the tides must tend Numerical

to diminish the angular velocity of the earth s rotation; it may n̂t of

be proved (and it was our intention to do so in a later volume) gjjjj

1 fric-

that this tendency is not counterbalanced to more than a very see Appen-

minute degree by the tendency to acceleration which results Tidal

from the secular cooling and shrinking of the earth. In obser

vational astronomy the earth s rotation serves as a time-keeper,

and thus a retardation of terrestrial rotation will appear astrono

mically as an acceleration of the motion of the heavenly bodies.

It is only in the case of the moon s motion that such an

apparent acceleration can be possibly detected. Now, as Laplace

first pointed out, there must be a slow variation in the moon s

mean motion arising from the secular changes in the eccentricity

of the earth s orbit round the sun. At the present time, and

for several thousand years in the future, the variation in the

moon s motion has been and will be an acceleration. Laplace s

theoretical calculation of the amount of that acceleration
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Numerical appeared to agree well with the results which were in his day
of the*

es

accepted as representing the facts of observations. But in 1853
amount of . j /.

-,,

tidal fric- Adams wrote as tollows :

tion.

See Appen-
&quot; In the Mecanique Celeste, the approximation to the value

Tidal
&quot; of the acceleration is confined to the principal term, but in the
&quot;

theories of Damoiseau and Plana the developments are carried
&quot;

to an immense extent, particularly in the latter, where the mul-
&quot;

tiplier of the change in the square of the eccentricity of the

&quot;earth s orbit, which occurs in the expression of the secular
&quot;

acceleration, is developed to terms of the seventh order.

&quot; As these theories agree in principle, and only differ slightly

&quot;in the numerical value which they assign to the acceleration,

&quot;and as they passed under the examination of Laplace, with
&quot;

especial reference to this subject, it might be supposed that at
&quot; most only some small numerical corrections would be required
&quot; in order to obtain a very exact determination of the amount of

&quot; this acceleration.
&quot; It has therefore not been without some surprise, that I have

&quot;

lately found that Laplace s explanation of the phenomenon in

&quot;question
is essentially incomplete, and that the numerical

&quot;results of Damoiseau s and Plana s theories, with reference

&quot;to it, consequently require to be very sensibly altered*.&quot;

Hansen s theory of the secular acceleration is vitiated by an

error of principle similar to that which affects the theories of

Damoiseau and Plana, but the mathematical process which he

followed being different from theirs, he arrived at somewhat

different results. From this erroneous theory Hansen found

the value 12&quot; 18 for the coefficient of the term in the moon s

mean longitude depending on the square of the time, the unit

of time being a century ;
in a later computation given in his

Darlegung, he found the coefficient to be 12&quot; 56^.

* &quot; On the Secular Variation of the Moon s Mean Motion,&quot; by J. C. Adams.

Phil. Trans. 1853. Vol. 143, p. 397.

t It appears not unusual for physical astronomers to use an abbreviated

phraseology, for specifying accelerations, which needs explanation. Thus when

they speak of the secular acceleration being e.g. &quot;12&quot; 56 in a century&quot;; they

mean by &quot;acceleration&quot; what is more properly &quot;the effect of the acceleration

on the moon s mean longitude.&quot; The correct unabbreviated statement is &quot;the

acceleration is 25&quot; -12 per century per century.&quot; Thus Hansen s result is that
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In 1859 Adams communicated to Delaunay his final result, Secular

namely that the coefficient of this term appears from a correctly of moon s

conducted investigation to be 5&quot;7, so that at the end of a tion

century the moon is 5&quot;*7 before the position it would have had

at the same time, if its mean angular velocity had remained the

same as at the beginning of the century. Delaunay verified

this result, and added some further small terms which increased

the coefficient from 5&quot; 7 to 6&quot;*1.

Now, according to Airy, Hansen s value of the &quot;advance&quot;

represents very well the circumstances of the eclipses of

Agathocles, Larissa and Thales, but is if anything too small.

Newcomb on the other hand is inclined from an elaborate

discussion of the ancient eclipses to believe Hansen s value to

be too large, and gives two competing values, viz. 8&quot; 4 and

10&quot;-9*.

In any case it follows that the value of the advance as

theoretically deduced from all the causes, known up to the

present time to be operative, is smaller than that which agrees

with observation. In what follows 12&quot; is taken as the obser

vational value of the &quot;

advance,&quot; and 6&quot; as the explained part

of this phenomenon. About the beginning of 1866 Delaunay partly ex-

i
.

8
i . . , plained by

suggested that the true explanation of the discrepancy might tidal fric-

be a retardation of the earth s rotation by tidal friction. Using
this hypothesis, and allowing for the consequent retardation of

the moon s mean motion by -tidal reaction
( 276), Adams, in an

estimate which he has communicated to us, founded on the

rough assumption that the parts of the earth s retardation due

in each century the mean motion of the moon is augmented by an angular

velocity of 25&quot;-12 per century; so that at the end of a century the mean

longitude is greater by ^ of 25 //-12 than it would have been had the moon s

mean motion remained the same as it was at the beginning of the century.

Considering how absurd it would be to speak of a falling body as experi

encing an acceleration of 16 feet in a second, or of 64 feet in two seconds;

and how false and inconvenient it is to speak of a watch being 20 seconds fast

when it is 20 seconds in advance of where it ought to be, we venture to suggest

that, to attain clearness and correctness without sacrifice of brevity,
&quot;

advance&quot;

be substituted for &quot;acceleration&quot; in the ordinary astronomical phraseology.
* See Researches on the Motion of the Moon (Washington, 1878), by Simon

Newcomb, Part i. pp. 13 and 280.

VOL. II. 27
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Numerical to solar and lunar tides are as the squares of the respective tide-

of amount generating forces, finds 22 sec. as the error by which the earth,
of tidal re- c

oMarth s
regar(kd as time-keeper, would in a century get behind a perfect

rotation. clock rated at the beginning of the century. Thus at the

end of a century a meridian of the earth is 330&quot; behind the

position in which it would have been, if the earth had con

tinued to rotate with the same angular velocity which it had at

the beginning of the century*.

Thermo- Besides the secular contraction of the earth in cooling re-
dynamic
acceleration ferred to above, which counteracts the tidal retardation of the
of earth s
rotation. earth s rotation to a very minute degree, there exists another

counteracting influence, as has been pointed out by Sir William

Thomson-)-, which, though much more considerable, is still but

small in the amount of its accelerative effect, compared with

the actual retardation as estimated by Adams. It is an ob

served fact that the barometer indicates variations of pressure

during the day and night, and it is found that when these

variations are analysed into their diurnal and semi-diurnal har

monic constituents, the semi-diurnal constituent rises to its

maximum about 10 a.m. and 10 p.m. The crest of the nearer

atmospheric tidal protuberance is thus directed to a point in the

heavens westward of the sun, and the solar attraction on these

protuberances causes a couple about the earth s axis by which

the rotation is accelerated. As the barometric oscillations are

due to solar radiation, it follows that the earth and sun together

constitute a thermodynamic engine. Sir William Thomson

computes, as a rough approximation, that from this cause the

earth gains about 2 7 seconds in a century on a perfect chro-

Retardation nometer set and rated at the beginning of the century. On the
from fall

of meteoric other hand the fall of meteoric dust on to the earth must cause
dust.

a small retardation of the earth s rotation, although to an

amount probably quite insensible in a century.

* See Appendix G (a), where Mr G. H. Darwin verifies Professor Adams s

computation, and shows that the combination of Hansen s 12&quot;-56 withDelaunay s

6&quot;*1 would show the earth to be losing 23-4 sec. in the circumstances defined in

the text; and that the combination of Newcomb s 8&quot; 4 with Delaunay s 6&quot; l

would give a result of 8 3 sec. instead of 23 4.

f Societe de Physique, Sept. 1881; or Royal Society of Edinburgh, Session

188182, p. 396.
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Whatever be the value of the retardation of the earth s causes for

rotation, it is necessarily the result of several causes, of which

tidal friction is almost certainly preponderant. If we accept

Adams s estimate (according to which the earth would in a

century get 22 sec. behind a perfect clock rated at the beginning
of the century) as applicable to the outcome of the various

concurring causes, then if the rate of retardation giving the

integral effect were uniform, the earth as a time-keeper would

be going slower by 22 of a second per year in the middle, and

by 44 of a second per year at the end, than at the beginning

of the century.

The latter is f^Vloe f the present angular velocity; and

if the rate of retardation had been uniform during ten mil

lion centuries past, the earth must have been rotating faster

by about one -seventh than at present, and the centrifugal

force must have been greater in the proportion of 817
2
to 7172

,

or of 67 to 51. If the consolidation took place then or earlier,

the ellipticity of the upper layers must have been ^o instead

of about -Q^Q, as it is at present. It must necessarily remain Date of

uncertain whether the earth would from time to time adjust tion of
earth.

itself completely to a figure of equilibrium adapted to the

rotation. But it is clear that a want of complete adjustment
would leave traces in a preponderance of land in equatorial

regions. The existence of large continents
(

832
),

and the

great effective rigidity of the earth s mass
( 848), render it

improbable that the adjustments, if any, to the appropriate

figure of equilibrium would be complete. The fact then that

the continents are arranged along meridians, rather than in an

equatorial belt, affords some degree of proof that the consolida

tion of the earth took place at a time when the diurnal rotation

differed but little from its present value. It is probable there

fore that the date of consolidation is considerably more recent

than a thousand million years ago. It is proper however to

add that Adams lays but little stress on the actual numerical

values which have been used in this computation, and is of

opinion that the amount of tidal retardation of the earth s

rotation is quite uncertain.

In Appendix D, (j) it is shown, from the theory of the

272
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Argument conduction of heat, that the date of consolidation may be about

ing of the a hundred million years ago ;
but that in all probability it

cannot have been so remote as five hundred million years from

the present time.

831. From the known facts regarding compressibilities of

terrestrial substances, referred to above
( 829), it is most

Abrupt
changes of
interior

density,

probable. Pr bable that even in chemically homogeneous substances there

is a continuous increase of density downwards at some rate

comparable with that involved in Laplace s law. But it is not

improbable that there may be abrupt changes in the quality of

the substance, as, for instance, if a large portion of the interior

of the earth had at one time consisted of melted metals, now

consolidated. We therefore append a solution of the problem

of determining the ellipticities of the surfaces of a rotating

mass consisting of two non-mixing fluids of different densities,

each, however, being supposed incompressible.

Two non
mixing
liquids of
different

densities,
each homo
geneous.

Let the densities of the two liquids be p and p + p ,
the latter

forming the spheroid

and the former filling the space between this spheroid and the

exterior concentric and coaxal surface

ri /i 2/j\~i /9\

Also let the whole revolve with uniform angular velocity o&amp;gt;. The

conditions of equilibrium are that the surface of each spheroid

must be an equipotential surface.

Now the potential at a point r, 0, in the outer fluid is

+ i(o

The first line is the potential due to a liquid of density p filling

the larger spheroid, the second that due to a liquid of density p

filling the inner spheroid, the third is the potential (JcoV sin
2

0)

of centrifugal force arranged in solid harmonics.
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Substituting in (3) the values of r from (1) and (2) succes- Two non-

sively, neglecting squares, etc., of the ellipticities, and equating fluids of

to zero the sum of the coeffi

equations from which we find

to zero the sum of the coefficients of (i cos
2

&amp;lt;9) ;
we have two densities,

x d
each homo-
geneous.

=
o /v 9 &amp;gt;

+ fP ) P +3 P
-

-T5PP 5

.(4).

The corresponding value of a is to be found from the equation

Expressing o&amp;gt;

2
in terms of the known quantity m we have

fluids of

,-v different

(5).
densities.

3o&amp;gt;

2

Also, to a sufficient approximation, we have

and the mean density is obviously p + -5- p ................... (7).
ct

The numerical values of the expressions (4) and (7) are approxi

mately known from observation and experiment, so that if we

assume a value of aja we can at once find p and p, and, from

them, the value of (C-A)/C.

From the formulas just given it is easy to show that results

closely agreeing with observation as regards precession, ratio

of surface density to mean density, and ellipticity of sea level

may be obtained without making any inadmissible hypotheses

as to the relative volumes and densities of the two assumed

liquids. But this must be left as an exercise for the student.

832. These estimates, and all dynamical investigations Rigidity of

(whether static or kinetic) of tidal phenomena, and of pre

cession and nutation, hitherto published, with the exceptions

referred to below, have assumed that the outer surface of the
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earth is absolutely unyielding. A few years ago*, for

the first time, the question was raised : Does the earth retain

its figure with practically perfect rigidity, or does it yield

sensibly to the deforming tendency of the moon s and sun s

attractions on its upper strata and interior mass ? It must

yield to some extent, as no substance is infinitely rigid : but

whether these solid tides are sufficient to be discoverable by

any kind of observation, direct or indirect, has not yet been

ascertained (see 847). The negative result of attempts to trace

negative the their influence on ocean and lake tides, as hitherto observed,

hypotfis suffices, as we shall see, to disprove the hypothesis, hitherto so

Solid crust, prevalent, that we live on a mere thin shell of solid substance,

enclosing a fluid mass of melted rocks or metals, and proves, on

the contrary, that the earth as a whole is much more rigid than

any of the rocks that constitute its upper crust.

Theinternai 832 . Since the first edition of this work appeared, certain
st.roca ! *

caused in further investigations have been made, the results of which
the earth by
the weight from a different point of view confirm the conclusion at which
of conti
nents. we have arrived concerning the solidity of the earth. This

subject, forming a point of confluence of the sciences of astro

nomy and geology, appears of some importance, so that we

propose to give a short account of these investigationsf.

The mathematical theory of elastic solids imposes no restric

tions on the magnitudes of the stresses, except in so far as that

mathematical necessity requires the strains to be small enough
to admit of the principle of superposition. Nature however

Conditions does impose a limit on the stresses : if they exceed a limit the

elasticity elasticity breaks down, and the solid either flows (as in the

down and punching or crushing of metals J) or ruptures (as when glass or

rupture stone breaks under excessive tension). It follows therefore that

besides the question of the earth s rigidity, on which depends the

* &quot; On the Eigidity of the Earth.&quot; W. Thomson. Trans. R. S., May 1863,

p. 573.

t
&quot; On the Stresses caused in the Interior of the Earth by the Weight of

Continents and Mountains,&quot; by Gr. H. Darwin. Phil. Trans. Vol. 173, Part i.

p. 187. 1882. [Reprinted with certain corrections in his Scientific Papers,

Vol. ii. p. 459. G. H. D.]

See the account of Tresca s most interesting experiments on the flow of

solids. Memoires Presentes a VInstitut, Vol. 18. 1868.
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amount of straining due to tidal or other stresses, there is an Rigidity of

important question as to the strength of the materials of the
conditions

aQT.*U underwhich
eartn.

elasticity
breaks

The theory of elastic solids as developed in 658, 663, &c.,
down and

shows that when a solid is stressed, the state of stress is com- rupture,

pletely determined when the amount and direction of the three

principal stresses are known, or, speaking geometrically, when

the shape, size, and orientation of the stress quadric is given.

It is obvious that the tendency of the solid to rupture must be

intimately connected with the shape of this quadric.

The precise circumstances under which elastic solids break Provisional
. . reckoning of

have not hitherto been adequately investigated by experiment, tendency to

i-i v/v rupture by
It seems certain that rupture cannot take place without diner- difference

. .- in between

ence of stress m different directions. One essential element greatest
^

therefore is the difference between the greatest and least of the principal

three principal stresses. How much the tendency to break is

influenced by the amount of the intermediate principal stress is

quite unknown. The difference between the greatest and least

stresses may however be taken as the most important datum

for estimating tendency to break. This difference has been

called by Mr G. H. Darwin (to whom the investigation of which

we speak is due) the &quot;

stress-difference.&quot; It may be proved

that the greatest tangential stress at any point is equal to half

the stress-difference. In the case of a wire under simple longi

tudinal stress, &quot;the tenacity&quot; is estimated by the stress per unit

area of section under which the wire breaks. In this case two

of the principal stresses are zero, and the third is the longitudinal

tension ;
thus tenacity is a word to define

&quot;

limiting stress-

difference&quot; when produced in a special manner. Engineers

have made a great many experiments on the strength of

materials for sustaining tensional and crushing stresses*, and

their experiments afford data for a comparison between the

strength which analysis shows that the materials of the earth

must possess in the interior, and that of the solids which have

been submitted to experiment.

*
See, for example, Rankine s Useful Rules and Tables. Griffin, London,

1873 ; and Sir W. Thomson s Elasticity. Black, Edinburgh, 1878.
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Rigidity of We have in 797 been occupied with the results of observa

tions giving the form of ellipsoid which most nearly satisfies

geodetic and gravitational experiments, but the existence of dry

land proves that the earth s surface is not a figure of equilibrium

Weight of appropriate to the diurnal rotation. Hence the interior of the

earth must be in a state of stress, and as the land does not sink

in, nor the sea-bed rise up, the materials of which the earth is

made must be strong enough to bear this stress.

We are thus led to inquire how the stresses are distributed in

the earth s mass, and what are magnitudes of the stresses.

Mr Darwin has, by means of the analysis of 834, solved a

problem of the kind indicated for the case of a homogeneous

incompressible elastic sphere, and has applied the results to the

discussion of the strength of the interior of the earth.

If the earth were formed of a crust with a semi-fluid interior,

the stresses in that crust must be greater than if the whole mass

be solid, very far greater if the crust be thin
;
and therefore this

investigation cannot give as its result stresses greater than

those which exist in reality.

He has only treated the problem for the class of inequali

ties called zonal harmonics
;

that is ( 781) inequalities con

sisting of a number of undulations running round the globe in

parallels of latitude. The number of crests is determined by

the order of the harmonic. The second harmonic constitutes

simply ellipticity of the spheroid. A harmonic of a high order

may be described as a series of mountain chains, with inter

vening valleys, running round the globe in parallels of latitude,

estimated with reference to the chosen equator.

stress when In the case of the second harmonic it is shown by Mr Darwin

ticlty o?&quot;the that the stress-difference rises to a maximum at the centre of

the globe, and is constant all over the surface. The central

toh&quot;

a (

stress-difference is eight times as great as that at the surface.
diurnal

On evaluating the stress-difference arising from given ellip

ticity in a rotating spheroid of the size and density of the earth,

it appears that if the excess or defect of ellipticity above or

below the equilibrium value were
i-^_,

then the stress-difference

at the centre would be 12 x 105

grammes weight per square
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centimetre
;
and that, if the sphere were made of material as Rigidity of

strong as brass, it would be just on the point of rupture. Again, stress when

if the homogeneous earth, with ellipticity ^, were to stop tldtyof the

rotating, the central stress-difference would be 50 x 105

grammes not aj?-

weight per centimetre, and it would break if made of any STtSe*

material except the finest steel. rotation.

The stresses produced by harmonic inequalities of high orders

are next considered in the paper to which we refer. This is in

effect the case of a series of parallel mountains and valleys, cor

rugating a mean level surface with an infinite series of parallel

ridges and furrows.

It is found that the stress-difference depends only on the

depth below the mean surface, and is independent of the position

of the point considered with regard to ridge and furrow.

Numerical calculation shows that if we take a series of moun- stress due

tains, whose crests are 4,000 metres (or about 13,000 feet) above

the intermediate valley bottoms, formed of rock of specific chains.

gravity 2*8, then the maximum stress-difference is 4 x 105

grammes

weight per square centimetre (about the tenacity of cast tin) ;

also if the mountain chains are 314 kilometres apart, the maxi
mum stress-difference is reached at 50 kilometres below the

mean surface.

The solution shows that the stress-difference is nil at the

surface. It is, however, only an approximate solution, for it

will not give the stresses actually in the mountain masses, but

it gives correct results at some four or five kilometres below the

mean surface.

The cases of the harmonics of the 4th, 6th, 8th, 10th, and 12th

orders are then considered
;
and it is shown that, if we suppose

them to exist on a sphere of the mean density and dimensions of

the earth, and that the height of the elevation at the equator is

in each case 1,500 metres above the mean level of the sphere,
then in each case the maximum stress-difference is about 6 x 105

grammes weight per square centimetre. This maximum is

reached in the case of the 4th harmonic at 1,840 kifometres,

and for the 12th at 560 kilometres, from the earth s surface.

In the second part of the paper it is shown that the great
terrestrial inequalities, such as Africa, the Atlantic Ocean, and
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Rigidity of America, are represented by a harmonic of the 4th order
;
and

that, having regard to the mean density of the earth being about

twice that of superficial rocks, the height of the elevation is to

be taken as about 1,500 metres.

Six hundred thousand grammes per square centimetre is the

crushing stress-difference of average granite, and accordingly it

is concluded that at 1,600 kilometres from the earth s surface

the materials of the earth must be at least as strong as

Conclusion granite. A very closely analogous result is also found from

strength of the discussion of the case in which the continent has not the

of earth regular undulating character of the zonal harmonics, but con-

tude Sagm sists of an equatorial elevation with the rest of the spheroid
actual con- .

,
, , . n

tinents. approximately spherical.

From this we may draw the conclusion, that either the

materials of the earth have at least the strength of granite at

1,600 kilometres from the surface, or they must have a much

greater strength near to the surface.

For the analysis by which these conclusions are supported we

must refer to Mr Darwin s paper.

The subject of this investigation has an important connection

with the date of the earth s consolidation as explained in 830

above.

Tidal influ- 833. The character of the deforming tidal influence of
ence of sun .. IMI
and moon the sun and moon will be understood readily by consider-

earth. ing that if the whole earth were perfectly fluid, its bounding
surface would coincide with an equipotential surface relatively

to the attraction of its own mass, the centrifugal force of

its rotation, and the tide-generating resultant
( 804) of the

moon s and sun s forces, and their kinetic reactions*. Thus

*
It was our intention to prove in Vol. n. that the &quot;equilibrium theory&quot; of

the tides for an ocean, whether of uniform density or denser in the lower parts,

completely covering a solid nucleus, requires correction, on account of the diurnal

rotation, but less and less correction the smaller this nucleus is
;
and that it agrees

perfectly with the &quot;kinetic theory&quot; when there is no nucleus, always provided the

angular velocity is not too great for the ordinary approximations ( 794, 801,

802, 815) which require that there be not, on any account, more than an in

finitely small disturbance from the spherical figure. It is interesting to remark

that this proposition does not require the tidal deformations to be small in com

parison with the 70,000 feet deviation due to centrifugal force of rotation.
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(SS 819, 824) there would be the full equilibrium lunar and Rigidity of
yy

. p the earth.

solar tides
;

or 2J times the amount ot the disturbing de- Tidal influ

viation of level if the fluid were homogeneous, or of nearly

twice this amount if it were heterogeneous with Laplace s earth
6

hypothetical law of increasing density. If now a very thin

layer of lighter liquid were added, this layer would rest

covering the previous bounding surface to very nearly equal

depth all round, and would simply rise and fall with that sur

face, showing only infinitesimal variations in its own depth,

under tidal influences. Hence had the solid part of the earth

so little rigidity as to allow it to yield in its own figure very

nearly as much as if it were fluid, there would be very nearly

nothing of what we call tides that is to say, rise and fall of

the sea relatively to the land
;
but sea and land together would

rise and fall a few feet every twelve lunar hours. This would,

as we shall see, be the case if the geological hypothesis of a

thin crust were true. The actual phenomena of tides, therefore,

give a secure contradiction to that hypothesis. We shall see

indeed, presently, ( 841) that even a continuous solid globe, of

the same mass and diameter as the earth, would, if homogeneous
and of the same rigidity ( 680) as glass or as steel, yield in its

shape to the tidal influences three-fifths as much, or one-third

as much, as a perfectly fluid globe ;
and further, ( 842) it will

be proved that the effect of such yielding in the solid, according

as its supposed rigidity is that of glass or that of steel, would

be to reduce the tides to about f or f of what they would be if

the rigidity were infinite.

834. To prove this, and to illustrate this question of elastic

tides in the solid earth, we shall work out explicitly the solu

tion of the general problem of 696, for the case of a homo

geneous elastic solid sphere exposed to no surface traction
;

but deformed infinitesimally by an equilibrating system of

forces acting bodily through the interior, which we shall ulti

mately make to agree with the tide-generating influence of the

moon or sun. In the first place, however, we only limit the

deforming force by the final assumption of 733.

Following the directions of 732, we are to find, the two

constituents (a,
y

/3, y) and (a,, (3^, yj for the complete solu-
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Rigidity of tion; of which the first, given by (6) and (7) of 733, is as

follows :

-

+ n 2(2i+3) dx (2i + 3)(2i + 5) dx i+l

with symmetrical formulae for
N

/3 and
v

y; which
[

733 (6)],

8 --
give

and, [
737 (28)], { ^Jj

.(2).

These, used in (29) of 737 with i + 2 for i, give

which, reduced to harmonics by the proper formula
[

737 (36)],

becomes

This, and the symmetrical formulae for
V

GV and ^Hr, with r taken

equal to a, express the components of the force per unit area

which would have to be balanced by the application from without

of surface traction to the bounding surface of the globe, if the

strain through the interior were exactly that expressed by (1).

Hence, still according to the directions of 732, we must now

find
(
a

/ ft 7/) tne state of interior strain which with no force

from without acting bodily through the interior, would result

from surface traction equal and opposite to that (4). Of this

part of the problem we have the solution in 737 (52), the par

ticular data being now

dWi+l

dx

i + 5)m-n
5) (m + n)

with symmetrical terms for Cit
and E

t + 9 ,
Cl+a ;

but none of

other orders than i and i + 2. Hence for the auxiliary functions

of 737 (50)

- i+1
~

....(6).

(2i + 3)(m + n)

,
and
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Now (52), with the proper terms for i + 2 instead of

to be used to give us a/, and through the vanishing of ^f

i_ 1
and

&amp;lt; it becomes

added, is
J|j

gidit
-rh

of

d*i+l

dx

m d*t+l

21 (a dx

where for brevity we put

To this we must add
N

a, given by (1), to obtain, according to

732, the explicit solution, a, of our problem. Thus, after

somewhat tedious algebraic reductions in which m + n, appearing

as a factor in the numerator and denominator of each fraction, is

removed, we find a remarkably simple expression for a. This,

and the symmetrical formulas for ft and y, are as follows s

....(8),
dy

i+

dz dz

where

...(9).

The infinitely great value of ([ for the case i = depends on

the circumstance that the bodily force for this case, being
uniform and in parallel lines through the whole mass, is not self

equilibrating, and therefore surface stress would be required for

equilibrium.

The formulas (8) are susceptible of considerable simplification

if we complete the differentiations in their last terms. We shall

at the same time separate the formulas into two parts, of which

one has for coefficient the bulk-modulus, and the other the

rigidity-modulus.
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Rigidity of

the earth.

of elasticity.

Case of

If k be the bulk-modulus, or modulus of resistance to com-
. IIP / K \

pression, we nave by 698 (5),

and n is the rigidity modulus.

Thus (7
1

)
becomes

Also on completing the differentiation we have

Then, on substituting in (9) for m from (9
1

), carrying the results

into (9
m

)
and separating the parts depending on k and n, we have

...(9&quot;).

and symmetrical formulae for fi and y.

In the elastic solids of which we have experimental know

ledge [ 684] the bulk-modulus is larger than the modulus of

rigidity, and therefore k is considerably larger than \n; thus

the terms written in the first line of (9
iv

)
are practically much

more important than those in the second. In the ideal case

of an absolutely incompressible elastic solid, the terms in the

second line of (9
iv

) vanish, and IIk becomes simply 2 (i + 2)
2 + 1,

and thus we have

and symmetrical formulas for ft and y.

The case of i = 1 is that with which we are concerned in the

tidal problem. In it (7
1

)
and

(9&quot;) give us

/=19wi-5w=19 + /i ................. (10).

To prepare for terrestrial applications we may conveniently

reduce to polar co-ordinates (distance from the centre, r
;

latitude, I
; longitude, X) such that

x = r cos I cos A, y = rcuxlsm\, z = rsmi ......
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and denote by p, /*, v, the corresponding components of displace

ment. The expressions for these will be precisely the same as

those for a, ft y, except that instead of^ ,
as it appears in the

expression for a, we have -3- in the expression for p ; ^
in that

J^eof^
sible elastic

for u and in that for v. Also in transforming from a sohd

r cos ld\

to p we must put x = r, and in transforming from (3 and y to

fj,
and v

} y and z must be put zero. Thus if we put

so that Si+} may denote the surface harmonic, or the harmonic

function of directional angular co-ordinates I, A, corresponding

to Wt+l ,
we have from (9

1V

)

a2 -(t + 2)r
2

|+^n{(i+l)a
2

-(i-l)r2}J

a2_(i + 4
)
r
2j
+ ^w (i + l)(a

2_ r
2)J

r
i?^i

+*+ 1M*- ?}a5n-

In the case of elastic solids, such as we know them experi

mentally, the terms in k are much more important than those

in n.

Now it is easy to show that, in as far as p depends on the

term in k, it reaches a maximum value when r=aJl-l/(i+2)
2

,

and in as far as it depends on the term in n it would algebrai

cally reach a maximum when r = a Jl + 2 /{(i+ 2) (i 1)}. But

this latter point being outside of the sphere it follows that the

term in n increases from the centre to the surface. We thus

see that p increases from zero at the centre, to a maximum
value near the surface, and then diminishes again.

In a similar manner it appears that ph reaches a maximum,

as far as concerns the term in k, when r = aj\ 3/{i (i + 2)};

and as far as concerns the term in n, when r = a.

When i=l, which corresponds to the case of the tidal pro

blem, we have from (13)
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Rigidity of

the earth.

dS.

r

cos

....(14).

It is obvious that p/r diminishes from the centre outwards to

the surface ;
and its extreme values are

-r iw) n
a

2 ~l9n\
+
1+ ^nfk)

2

\ (is).

p 5k + 4rn on, oa /- -^nh.
at the surface - = TT^ f-r = TTT~ (

1 +
i 4.+ 4w)rc 19?z\ l+TT 7*

at the centre
-=^ 19jfc

centrifugal
force :

tide-gene
rating force.

When the disturbing action is the centrifugal force of uniform

rotation with angular velocity &amp;lt;D,

we have as found above (794)
for the whole potential

TTT M 2 2 122/1 2 A\) /I \
\\ =

J-i-W 7&quot; -4- -SW 7* (-i- COS t/)f \ /

where w denotes the mass of the solid per unit volume. The

effect of the term JwwV is merely a drawing outwards of the

solid from the centre symmetrically all round; which we may
consider in detail later in illustrating properties of matter in our

second volume. The remainder of the expression gives us

according to our present notation

JF
8
= T (a

2 + if
- 2z

2

) ;
or S

2
= WT

(
- cos

2

6) (17),

where T = Jw
2

(18).

For tide-generating force the same formulae (14) and (15) hold

if (804, 808, 813) we take

r =*J v (19),

and alter signs so as to make the strain-spheroids prolate instead

of oblate. The deformed figure of each of the concentric

spherical surfaces of the sphere is of course an ellipsoid of

revolution; and from (15) we find for the extremes :

ellipticity of central strain spheroids
=

of free surface

(20).
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From these results, (8) to (20), we conclude that Elastic solid
tides.

835. The bounding surface and concentric interior spherical
surfaces of a homogeneous elastic solid sphere strained slightly

by balancing attractions from without, become deformed into

harmonic spheroids of the same order and type as the solid har

monic expressing the potential function of these forces, when

they are so expressible: and the direction of the component
displacement perpendicular to the radius at any point is the

same as that of the component of the attracting force perpendi
cular to the radius. These concentric harmonic spheroids Homogene-

although of the same type are not similar. When they are

the second degree (that is when the force potential is a solid face
;

a
de&quot;

r

harmonic of the second degree), the proportions of the ellipti- bSy hlr-

cities in the three normal sections of each of them are the

same in all : but in any one section the ellipticities of the con

centric ellipsoids increase from the outermost one inwards to

the centre, in the ratio of 5fc + fw to Sk + n, or

7k
l

If -fan/k be small, as is in general the case, the ratio is Case of
. , _ / , second de-

approximately &+ -J*n/k : 1. gree givesrr
elliptic de-

For harmonic disturbances of higher orders the amount of de- diminishing
.

,
. n

-,
.

, T ,/, . . ,T from centre
viation irom sphericity, reckoned of course in proportion to the outwards :-

radius, increases from the surface inwards to a certain distance, grees give

and then decreases to the centre. The explanation of this re- portionate
* deviation

markable conclusion is easily given without analysis, but we

shall confine ourselves to doing so for the case of ellipsoidal

disturbances.

836. Let the bodily disturbing force cease to act, and let Synthetic

the surface be held to the same ellipsoidal shape by such a maximum

distribution of surface traction (SS 693, 662) as shall maintain a* centre,^s fordefor-

a homogeneous strain throughout the interior. The interior

ellipsoidal surfaces of deformation will now become similar order-

concentric ellipsoids : and the inner ones must clearly be less

elliptic than they were when the same figure of outer boundary

was maintained by forces acting throughout all the interior;

VOL. n. 28
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Rigidity of and, therefore, they must have been greater for the inner sur

face. And we may reason similarly for the portion of the

whole solid within any one of the ellipsoids of deformation, by

supposing all cohesive and tangential force between it and the

Synthetic solid surrounding it to be dissolved
;
and its ellipsoidal figure to

maximum be maintained by proper surface traction to give homogeneous
at centre* strain throughout the interior when the bodily force ceases to

mationof act. We conclude that throughout the solid from surface to

order. centre, when disturbed by bodily force without surface traction,

the ellipticities of the concentric ellipsoids increase inwards.

837. When the disturbing action is centrifugal force, or

tide generating force (as that of the sun or moon on the earth),

the potential is, as we have seen, a harmonic of the second

degree, symmetrical round an axis. In one case the spheroids

of deformation are concentric oblate ellipsoids of revolution;

in the other case prolate. In each case the ellipticity increases

from the surface inwards, according to the same law [834 (15)]

which is, of course, independent of the radius of the sphere.

pbiateness
For spheres of different dimensions and similar substances the

ellipticities produced by equal angular velocities of rotation

are as the squares of the radii. Or, if the equatorial surface

velocity ( V] be the same in rotating elastic spheres of different

dimensions but similar substance, the ellipticities are equal.

The values of the surface and central ellipticities are respec

tively
3 V zw , 14 V 2w

lon

for solids fulfilling Poisson s hypothesis ( 685), according to

which m = 2n, or k = f n.

If the solid be absolutely incompressible these ellipticities

are by 834 (15)

5 V*w , 8 V 2w
- .................. (22) -

Now since -^
= -2727 and -^ = 2632

;
and J = 4242 and

3^= 4211, we see that the compressibility of the elastic solid

exercises very little influence on the result.
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For steel or iron the values of n and m are respectively Elastic solid

780 x 106 and about 1600 x 106

grammes weight per square

centimetre, or 770 x 109 and about 1600 x 10 9

gramme-centi

metre-seconds, absolute units
( 223), and the specific gravity (w)

is about 7 8. Hence a ball of steel of any radius rotating with

an equatorial velocity of 10,000 centimetres per second will be

flattened to an ellipticity ( 801) of
^~^&amp;gt;

For a specimen of

flint glass of specific gravity 2\94 Everett finds n = 244 x 106

grammes weight per square centimetre and very approximately
m = 2n. Hence for this substance n/w = 83 x 106

[being the

length of the modulus of rigidity ( 678) in centimetres]. But the

numbers used above for steel give n/w = 100 x 106 centimetres
;
Numerical

and therefore ( 838) the flattening of a glass globe is l/ 83, or iron and

1
J-
times that of a steel globe with equal velocities.

838. For rotating or tidally deformed globes of glass or Rotational

metals, the amount of deformation is but little influenced by eiiipticities

compressibility, as we see from the numerical comparison given in influenced

837. For any substance for which 3k
&amp;gt;

on the surface ellipti-
sibmty, in

city is diminished by three per cent, or by less than three per metallic,

i,. . . i
vitreous, or

cent., and the centre elupticity by -I per cent., or less than per gelatinous,..,.. 3r elastic

cent, if we suppose the rigidity to remain in any case unchanged, solid.

but the substance to become absolutely incompressible. For

the surface ellipticity, 834 (22) gives on this supposition

or with n = 770 x 109
as for steel

( 837),

a = (J40 x 106
,
the earth s radius in centimetres,

and w = 5 5, mean density,

we have, in anticipation of 839,

e = 77x!0 4
.r ........................ (24).

839. If now we consider a globe as large as the earth, and Value of

of incompressible homogeneous material, of density equal to eUiptidti

the earth s mean density, but of the same rigidity as steel or sam
g
esize

, t T ,T n ^ -i A-, and mass a

glass ;
and if, in the first place, we suppose the matter of such earth, of

i i non-gravi-
a globe to be deprived of the property of mutual gravitation tating

282
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material, between its parts: the ellipticities induced by rotation, or by tide

us, incom- generating force, will be those given by the preceding formulae

and same
[ 834 (20)], with the same values of n as before; with n/k

= Q;

steel!
7

with 640 x 106
for a, the earth s radius in centimetres; and

with 5*5 for w instead of the actual specific gravities of glass

and steel.

But without rigidity at all, and mutual gravitation between

the parts alone opposing deviation from the spherical figure,

we found before
( 819) for the ellipticity

l04
.r .................... (25).* 9

comparison 840. Hence of these two influences which we have con-

spheroidal- sidered separately: on the one hand, elasticity of figure, even
maintaining t /&amp;gt; 11111
powers of with so great a rigidity as that of steel

; and, on the other hand,
gravitation . .

J

and rigidity, mutual gravitation between the parts: the latter is consider-

homogene- ablv more powerful than the former, in a globe of such dimen-
ous solid

J

globes. sions as the earth. When, as in nature, the two resistances

against change of form act jointly, the actual ellipticity of form

will be the reciprocal of the sum of the reciprocals of the ellip

ticities that would be produced in the separate cases of one or

other of the resistances acting alone. For we may imagine the

disturbing influence divided into two parts : one of which alone

would maintain the actual ellipticity of the solid, without

mutual gravitatiqn; and the other alone the same ellipticity

if the substance had no rigidity but experienced mutual gravi

tation between its parts. Let r be the disturbing influence as

denote measured by 834 (20), (21); and let r/r and r/g be the ellipti-s r

tpdeforma- cities of the spheroidal figure into which the globe becomes
tion due re- , n , . . ., . . , . . , .

,
,

spectiveiy altered on the two suppositions of rigidity without gravity and

and to gravity without rigidity, respectively. Let e be the actual

ellipticity and let r be divided into r and T&quot; proportional to

the two parts into which we imagine the disturbing influence

to be divided in maintaining that ellipticity. We have T = r + T&quot;&amp;gt;

arid e = T /r= r&quot;/g.

Whence - = t + g, or - =- + --, which proves the proposition.

14
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By 838, 839 we have r =-^ ,
and a = f^ ..... (27,5a to

J oa

and .

&quot;

= = ........... (28)

where n/g is the rigidity in grammes weight per square centi- Rigidity of

metre. For steel and glass as above ( 837, 839) the values

of r/g are respectively 2 1 and 66.

840 . Mr G. H. Darwin has shown* how the introduction of Analytical

the effects of the mutual gravitation of the parts of the spheroid tion of

may be also carried out analytically instead of synthetically, gravitation.

The sphere being in a state of strain is distorted into a spheroid

(say r = a + a., where &. is a surface harmonic). Then the

state of internal stress and strain in the spheroid is due to

three causes, (i) the external disturbing potential Wiy (ii) the

attraction of the harmonic inequality of which the potential is

2gwi*irJ(2ii -f 1) a
1

, (iii) the weight (positive in parts and nega
tive in others) of the inequality &amp;lt;r if This last is equivalent
to a normal traction per unit area applied to the surface of

the sphere equal to givcr^ It is not possible to arrive at

the results due to the last cause without a modification of the

analysis of 834, because we have to introduce the effects of

surface tractions.

But Mr Darwin shows (p. .9 loc. cit.) that &quot;if TT, be the

potential of the external disturbing influence, the effective

potential per unit volume at a point within the sphere, now
free of surface action and of mutual gravitation, is

W
t
-

2giv (i
-

1) ?^r,/(2i + 1) a* = r*T
t suppose.&quot;

The case considered by him is that of an incompressible
viscous spheroid, and he goes on to find the height and retarda

tion of tide in such a spheroid. The analysis is, however, almost

literatim applicable to the case of an elastic incompressible

spheroid.

Suppose now that the external disturbing potential is

*
&quot;On the Bodily Tides of Viscous and Semi-elastic Spheroids, &c.&quot; Phil.

Trans. Part i. 1879, p. 1. [Eeprinted in his Scientific Papers, Vol. n. p. 1.

O.H.D.]



438 ABSTRACT DYNAMICS. [840 .

of and that the sphere consequently becomes distorted into the

spheroid whose equation is r = a [1 + e
(-J-

cos
2

0)], so that

^roduc&quot;
o-

2
= ae($ cos

2

6). Then the effective disturbing potential to

effects of produce the same strain in a sphere devoid of o-ravitation is
gravitation.

A

(r ge) ivr* (J
- cos

2

0). Such a potential we know by (23) 838,

and (27) 840, will produce ellipticity e, given by e = (r Q&amp;lt;

Whence

(20),
r 4- g

which is the result (26) of 840.

The analytical method has the advantage of showing that we
are neglecting as small the tangential action between the in

equality cr
t
. and the true spherical surface, a fact which is not so

obvious from the synthetical mode of treatment. In the case

of the viscous spheroid considered by Mr Darwin this tangential

action (although varying as r
2

) is of much interest, for the sum
of the moments of all the tangential actions about the axis of

revolution of the spheroid constitutes the tidal frictional retard

ing couple *.

Hypothesis In the paper to which we refer Mr Darwin has also investigated

elasticity

6

^ the consequences which would arise from the hypothesis that

the elasticity of the earth is not perfect, but that the stress

requisite to maintain a given state of strain diminishes in

geometrical progression as the time, measured from the time of

straining, increases in arithmetical progression. This hypothesis

undoubtedly represents some of the phenomena of the imper
fect elasticity of actual solids. He finds, then, that if &quot;the

modulus of the time of relaxation of
rigidity,&quot; being the time

in which the stress falls to 1/e or 378 of its ihitial value, be

about one-third of the period of the tidal disturbance, then the

height of the bodily tide scarcely differs sensibly from the height

on the hypothesis of perfect elasticity. The phase of tide

would still however be considerably affected. The existence of

the great continents
(

832
) proves almost conclusively that for

* See &quot;Problems connected with the Tides of a Viscous Spheroid.&quot; Phil.

Trans. Part n. 1879, p. 539. [Reprinted in his Scientific Papers, Vol. n. p. 140.

G. H. D.]
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stresses lasting for a few hours or days the earth has practically

perfect elasticity.

841. Reverting now to the results of 840, it appears that Rigidity of

if the rigidity of the earth, on the whole, were only as much as unless

that of steel or iron, the earth as a whole would yield about that of steel
J would be

one-third as much to the tide-generating influences of the sun v
jg^

and moon as it would if it had no rigidity at all
;
and it would

yield by about three-fifths of the fluid yielding, if its rigidity a
n
f^

were no more than that of glass.

842. To find the effect of the earth s elastic yielding on the

tides, we must recollect
( 819) that the ellipticity of level due

to the disturbing force, and to the gravitation of the undisturbed

globe, which
[ 804, 808, (18), (19)] is ar/g, will be augmented

by f e on account of the alteration of the globe into a spheroid influence

of ellipticity e: so that if
( 799) we neglect the mutual attrac- yielding of

tion of the waters, we have for the disturbed ellipticity of the earth on the
* surface-

Sea level ( 785) liquid tides.

-T + l* ............................ (29).
t/

The rise and fall of the water relatively to the solid earth will

depend on the excess of this above the ellipticity of the solid.

Denoting this excess, or the ellipticity of relative tides, by e,

we have

e=-fe ........................ (30),

or by (26) and (27)
= T

FTg
........................ (31)

Hence the rise and fall of the tides is less than it would be

were the earth perfectly rigid, in the proportion that the resist

ance against tidal deformation of the solid due to its rigidity

bears to sum of the resistances due to rigidity of the solid and

to mutual gravitation of its parts. By the numbers at the end

of 840 we conclude that if the rigidity were as great as that

of steel, the relative rise and fall of the water would be reduced

by elastic yelding of the solid to f ,
or if the rigidity were only

that of glass, the relative rise and fall would be actually re

duced to f, of what it would be were the rigidity perfect.
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Rigidity of 843. Imperfect as the comparison between theory and

observation as to the actual height of the tides has been

hitherto, it is scarcely possible to believe that the height is

in reality only two-fifths of what it would be if, as has been

probably universally assumed in tidal theories, the earth were perfectly

the whole
rigid. It seems, therefore, nearly certain, with no other evi-

of a solid dence than is afforded by the tides, that the tidal effective

rigidity of the earth must be greater than that of glass.

844. The actual distribution of land and water, and of

depth where there is water, over the globe is so irregular, that

we need not expect of even the most powerful mathematical

Dynamic analysis any approach to a direct dynamical estimate of what

tidesLo the ordinary semi-diurnal tides in any one place ought to be

if the earth were perfectly rigid. In water 10,000 feet deep
absolute (which is considerably less than the general depth of the

mampheno- Atlantic, as demonstrated by the many soundings taken within

the last few years, especially those along the whole line of the

Atlantic Telegraph Cable, from Valencia to Newfoundland), the

velocity of long free waves, as will be proved in Vol. n., is 567

feet per second*. At this rate the time of advancing through

57 (or a distance equal to the earth s radius) would be only

ten hours. Hence it may be presumed that, at least at all

islands of the Atlantic, any tidal disturbance, whose period

amounts to several days or more, ought to give very nearly the

but not so true equilibrium tide, not modified sensibly, or little modified,

nightly ami bv the inertia of the fluid. Now such tidal disturbances ( 808)
semi-annual . . / i &amp;gt; i 11 e j T
tides. exist in virtue 01 the moon s and sun s changes ot decimation,

having for their periods the periods of these changes.

845. The sum of the rise from lowest to highest at Teneriffe,

and simultaneous fall from highest to lowest at Iceland, in the

Amounts of lunar fortnightly tide, would amount to 4 3 inches if the earth

KtS?* were perfectly rigid, or 2 9 inches if the tidal effective rigidity

arioussup- were only that of steel, or 1*7 inches if the tidal effective

rigidity were only that of glass. The amounts of the semi

annual tide, whatever be the actual rigidity of the earth, would

of course be about half that of the fortnightly tide. The amount

*
Airy, Tides and Waves, 170.
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of either in any one place would be discoverable with certainty Rigidity of

to a small fraction of an inch by a proper application of the

method of least squares, such as has hitherto not been made,

to the indications of an accurate self-registering tide-gauge.

For our present object, the semi-annual tide, though it may
have the advantage of being more certainly not appreciably

different from the true equilibrium amount, may be sensibly

affected by the melting of ice from the arctic and antartic polar

regions, and by the fall of rain and drainage of land elsewhere,

which will probably be found to give measurable disturbances

in the sea level, exhibiting, on the average of many years, an

annual and semi-annual harmonic variation. This disturbance probably

will, however, be eliminated for any one fortnight or half-year, learned

. , . Hi T f
firo?1 bser-

by combining observations at well-chosen stations in dif- vatjons

ferent latitudes. It seems probable, therefore, that a some- amounts ofr
fortnightly

what accurate determination of the true amount of the earth s tides.

elastic yielding to the tide-generating forces of the moon

and sun may be deduced from good self-registering tide-

gauges maintained for several years at such stations as Ice

land, Teneriffe, Cape Verde Islands, Ascension Island, and

St Helena. It is probable also that the ratio of the moon s

mass to that of the earth may be determined from such observa

tions more accurately than it has yet been. It is to be hoped Tide-gauges

that these objects may induce the British Government, which biished at

has done so much for physical geography in many ways, to tions.

establish tide-gauges at proper stations for determining with

all possible accuracy the fortnightly and semi-annual tides,

and the variations of sea level due to the melting of ice in the

polar regions, and the fall of rain and drainage of land over the

rest of the world.

846. More observation, and more perfect reduction of obser- Scantiness

i 1-11 of informa-

vations already maae, are wanted to give any decided answer
tion^

regard-

to the questions, how much the fortnightly tide and the semi-
g

annual tide really are.
&quot; In the Philosophical Transactions,

&quot;1839, p. 157, Mr Whewell shows that the observations of vation-

&quot;

high and low water at Plymouth give a mean height of water
&quot;

increasing as the moon s declination increases, and amounting
&quot; to 3 inches when the moon s declination is 25. This is the
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Rigidity of &quot;same direction as that corresponding in the expression above

to a high latitude. The effect of the sun s declination is not

-
&quot;

investigated from the observations. In the Philosophical

Transactions, p. 163, Mr Whewell has given the observations

to
d
dra

b
wn

er &quot;

&quot; of some most extraordinary tides at Petropaulofsk, in Kams-
f

y
r

atTon
bser &quot;

&quot;

chatka, and at Novo-Arkhangelsk, in the Island of Sitkhi, on

&quot; the west coast of North America.

&quot; From the curves in the Philosophical Transactions, as well

&quot;as from the remaining curves relating to the same places
&quot;

(which, by Mr Whewell s kindness, we have inspected), there

&quot;appears
to be no doubt that the mean level of the water at

&quot;Petropaulofsk and Arkhangelsk rises as the moon s deelina-

&quot;tion increases. We have no further information on this

&quot;point.&quot; (Airy s Tides and Waves, 533.)

Advance in 847. We have left these sections, on the probability of the

of
n
udes

dse

great effective rigidity of the earth, in the form in which they

firsfedi

6

stood in our first edition in 1867. Since that date great

advances have been made in our knowledge of actual tidal

phenomena. The Tidal Committee of the British Association

&quot;

appointed on the motion of Sir William Thomson in 1867, with

for one prominent object the evaluation of the long-period tides

for the purpose of answering the question of the Earth s
rigidity,&quot;

has done much towards the attainment of a satisfactory know

ledge of the tides in the ocean surrounding these islands.

But by far the most complete information relates to the Indian

Ocean, for in consequence of the exertions of General Walker,

Sir William Thomson, General Strachey and others, the Indian

Government has taken up the question, and is now issuing, under

the direction of General Walker and Major Baird, RE., tide tables

for the principal ports in India. We are thus now able to

present the following discussion of the questions raised above,

contributed to our present edition by Mr G. H. Darwin.

The theo- 848. The expression for a tide should consist of a spheri-

cal harmonic function of latitude and longitude of places on the

earth s surface multiplied by a simple time-harmonic; but

where a correct expansion, rigorously following this defi

nition, would involve some terms of very long period, it



848.] STATICS. 443

is more convenient to regard the spherical harmonic as itself The theo-
. retical value

slowly varying between certain limits, and thus to amalgamate of the fort-

a number of terms together. The last term of (23) 8 808 will monthly
elliptic

give the theoretical equilibrium values of the fortnightly decli- tides,

national tide, and of the monthly elliptic tide. The full expan
sion of this term would involve a certain part going through its

period in 19 years, in which time the lunar nodes complete a

revolution. This part will, according to Sir William Thomson, be

most conveniently included by conceiving the inclination of the

lunar orbit to the equator to undergo a slow oscillation in that-

period. In practice an average value for the inclination, the

average being taken over a whole year, is sufficiently exact.

(a) In what follows, the descending node of the equator on

the lunar orbit will be called &quot;the intersection.&quot; If the lunar

orbit were identical with the ecliptic, the intersection would be

the vernal equinox or T.

The following is a summary of the notation employed below :

For the moon :

M = mass
;
D = radius vector

;
c = mean distance

;
o- = mean

motion
;

= true longitude in the orbit
;

i inclination of lunar

orbit to the ecliptic : N&quot;= longitude of ascending node on the

ecliptic; or = longitude of perigee in the orbit; e = eccentricity

of orbit; = longitude of &quot;the intersection&quot; in the orbit; v =

right ascension of &quot;the intersection&quot;; 8 = declination.

Observe that longitudes &quot;in the orbit&quot; are measured along the

ecliptic as far as the lunar node, and thence along the orbit; or

are measured altogether in the movable orbit from a point

therein, which is at a distance behind the node equal to the

distance of the node from T-

For the earth :

j& = mass; a = mean radius; I, A = latitude and W. longitude

of places on the earth s surface
;

to = obliquity of ecliptic ; /= in

clination of equator to lunar orbit.

For both bodies together, let r=^MdA
IEc

A
. And let the

time t be measured from the instant when the moon s mean

longitude vanishes.

The readers of the Tidal .Reports of the British Association



444 ABSTRACT DYNAMICS. [848

Long-period for 1868, 1870, 1871, 1872, 1876* may find it convenient to

note that the symbols employed are frequently the Greek

initials of the corresponding words : thus, y, o-, 17 [y-fj, &amp;lt;re\rjvr),

V\.ios] for the rotation and mean motions of earth, moon, and

sun.

We may now write the last term of (23) 808, thus

where H= -ra l + 0-
It is obvious from the solution of a right-angled spherical triangle

that

sin 8 = sin / sin (6 ).

Whence

l-3sin 2
S = l-fsin

2 / + f sin
2 / cos 2 (0

-
)

....... (2).

By the theory of elliptic motion, we have, on neglecting the

solar perturbation of the moon, which causes the evection, the
*variation and other inequalities,

- OT
) ............... (3).

In proceeding to further developments, e and sin
2 / will be

treated as small quantities of the first order, and those of the

second order will be neglected. Thus in terms of the first order

we have
= o-* ..................... . ........

(4).

Then from (3) and (4) we have

C
3

yp
= 1 + 3e cos (at

-
zsr),

and from (1), (2), and (4)

^={1
+ 3e cos

(&amp;lt;rt

- w)} {1
-
| sin

2 / + f sin
2 /cos 2 (at

-
)}

=1 - f sin
2 / + 3e (I

-
f sin

2

/) cos (at
-

*r) + f sin
2 / cos 2 (at

-
)

............
(5).

In this expression the first term 1 - f sin
2/ oscillates with a

period of 19 years about the mean value 1 fsin
2
w, the

* Also of papers presented to the British Association by Sir W. Thomson and

Capt. Evans, B.N., in 1878 (reprinted in Nature, Oct. 24, 1878), and by
Mr G. H. Darwin in 1882. [See also Vol. i. of Sir G. H. Darwin s Scientific

Papers. G. H. D.]



848.] STATICS. 445

maximum and minimum values of / being o&amp;gt; + i and w i. Long-period

It represents a small permanent increase to the ellipticity of the

oceanic spheroid, on which is superposed a small 19-yeaiiy tide.

This part of the expression has no further interest in the present

investigation. The last term of (5) goes through a double period

in nearly 27 &quot;3 m. s. days and constitutes the fortnightly clecli-

national tide. If the approximation were carried to terms of

the second order, which may very easily be done, this term would

have involved a factor 1 --fe*. The middle term goes through

a single period in something over &quot;21 3 days, the angular motion

of the lunar perigee being 40 40 per annum. This term as it

stands in (5) is complete to the second order. Thus we may
write the expressions to the second order of small quantities,

for the fortnightly and monthly elliptic tides, thus :

(6).

(b) We must now show how to compute / and
,
and it Formula

will be expedient (as will appear below) at the same time to longitude
. and R.A. of

compute v. the jnter.

The accompanying figure exhibits the relation of the three

planes to one another.

the longitude of I in the orbit is T 1
-

Si I, and v the right

ascension of I is Tl.

Now from the spherical triangle Tjl, we have

cot I | sinN= cos ^Vcos i + sin i cot w
(7),

cot IT sin N=coslV cos o&amp;gt; + sin w coti (8),

cos/ = cos i cos o&amp;gt; sin i sin w cosN
(9).
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Long-period
tides.

Formulas
for the
longitude
anof R.A. of

the inter
section.

Also tan
(cot I ft sin N- cos N) sin^V

cos N cot I sin JV + sin^V

Substituting in which from (7), and effecting some reductions

in the result, and in (8), we have

sin i cot co sin ^V (1 tan J i tan co cosN }

tan * = ---21 _
f g

-

n ^ cofc w cos^ _ sin2 1 i cos 2^Vcos

tan i cosec co sin a
tan V =

;
: 5fr

1 + tan i cot co cos iv

These formulas are rigorously true, but since i is small, being

about 5 9
,
we may obtain much simpler approximate for

mulae, sufficiently accurate for all practical purposes. Treating

then sin i and tan i as equal to one another, and to i the circular

measure of 5 9
, equations (10) become approximately,

tan i cot co sin ff-
1 - ijr

sin
2
to

sin 2J\ -&quot;V

(ii).

tan v = cosec co sn ff-
sin co

The second terms of these expressions are very nearly equal

to one another, because cos co - 1 - sin
2
co approximately. And

v - 1 is a small angle, which is to a close degree of approxima

tion equal to i tan \ co sin N.

Numerical calculation shows that itanjco is 1 4
;

hence

= v - 1 4 sin jV very nearly.

In the Tidal &quot;Report
of the British Association for 1876 the

treatment of this subject, with notation involving a symbol D, is

somewhat different from the above, but the result is the

same. The symbol })
denotes - the equatorial mean moon s&quot;

right ascension at the epoch when t = Q; which it may be ob

served is not the same epoch as that chosen here. This fictitious

mean moon moves in the equator with an angular velocity equal

to the moon s mean motion, and it is at the &quot; intersection
&quot; at

the instant when the moon s mean longitude is equal to the

longitude &quot;in the orbit&quot; of the intersection. In other words,

if we take a second fictitious moon moving in the plane of the

lunar orbit with an angular velocity equal to the moon s mean

motion, and coinciding with the actual moon at the instant

when the moon s mean longitude vanishes, then the equatorial
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mean moon coincides with this orbital mean moon at the inter- Long-period
tides,

section.

It is obvious then that the right ascension of the equatorial

mean moon will always differ from the moon s mean longitude

by v _ and thus

])
= moon s mean longitude at the epoch + 1 4 sin JV.

Therefore with the epoch of the Report of 1876 (pp, 299, 302)

a-t + ])
_ v = moon s mean longitude + 14 sin N - v

= moon s mean longitude

Now according to the Report (p 305), the fortnightly tide is Formulas

expressed, (by means of H as denned in (1) above), in the form longitude
and R.A. of

H 3
sill

2 I COS 2 (at + D
- v\ the inter

section.

This only differs from (6) in the term -|e
2
,
which is the correc

tion for the eccentricity of the lunar orbit.

It is to be remarked that in the report ^ iff is the moon s

mean anomaly at the epoch, and therefore & is equal to the

mean longitude of the moon s perigee + 14 sin N, and not simply

the mean longitude of the moon s perigee, as denned in the last

line of p. 302. Since the moon s mean anomaly is only involved

in the arguments of the elliptic tides, which are all small, this

correction in is has no practical importance. It is however im

portant, in regard to clear ideas of the notation and the spherical

trigonometry of the subject.

In consequence of not at first apprehending properly the

nature of the fictitious
;

equatorial mean moon,&quot; I overlooked

the term 1 4 sin .AT in
]),

and in the reductions made below

have \ised v instead of . Since the difference between v and

is clearly of little importance in respect to the numerical

values of the fortnightly tide, I have not repeated the compu
tations with the correct value of D, or, in the present notation,

with in place of v.

(c)
The factor H or Je[ (1 +&amp;lt;)

- sin
2

()
involves the

function C, which depends on the distribution of land and water

on the earth s surface. By (21) 808

I
|T(3

sin
2 1- 1) cos Idl d\

where O is the total area of ocean, and where the double integral

is taken all over the surface of the ocean.
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Long-period
tides.

Evaluation
of the
function.

The integral of 3 siiW 1 taken over the whole sphere vanishes,

and therefore the integral taken over the sea is equal to, but

opposite in sign to the integral taken over the land. It is more

convenient to integrate over the land, because there is less of it,

than over the sea.

In order to evaluate this integral, and to determine O the

total area of sea at the same time, it will be sufficiently accurate

if we replace the actual continents and islands of the earth by
blocks of land, limited by parallels of latitude and by meridians.

The following schedule specifies the blocks which were taken to

represent the actual land, together with the names of the land

to which they are supposed to correspond.

Since it is impossible that the amount of water, which flows

in and out of the Mediterranean Sea in a week or a fortnight,

can influence the height of the sea in the open ocean to any

sensible extent, that sea has been treated as though it were

dry land. The longitudes of the land are given so that any
one may verify that the representation of the continents is

pretty good; in evaluating the other four functions of (21) 808

these longitudes would be required j
but for & we only require

the number of degrees of longitude, which are occupied by land,

between each pair of parallels of latitude.

As explained above

(12),

= 4ir-
ifcosldld\

....................... (13),

when the integrals are taken all over the land of the globe.

Now

and

I (3 sin
2
1 - 1) cos ldl = - (sin I + sin 3Z),

I cos Idl = sin I.

If therefore there be t
l degrees of land between latitudes \

and I of the N. hemisphere, and ta degrees of land between the

same parallels of the S. hemisphere, it is clear that the con

tributions to (12) and (13) due to land between these latitudes

in both hemispheres, are respectively

j?L ft + g l
[sin I + sin 3^ and - ^ ft 4-

1.) [sin fl
.
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APPKOXIMATE DISTRIBUTION OF LAND ON THE EARTH S SURFACE.
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Eraluation
of the
iunction &amp;lt;.

mation for the contributions due to each such pair of latitudes,

we have

Theoretical
expressions
for equi
librium
value of

fortnightly
and
monthly
tides.

It is only necessary to form tables of sin I and \ (sin I + sin 3Z)

for each 10 of latitude from to 90, and then to form the

first differences of these two sets of values, and subsequently

to perform a number of multiplications, in order to obtain the

required results. As the amount of antarctic land is quite

uncertain, two suppositions were taken, namely, first that there

is as much antarctic land as is given in the schedule, and

secondly, that there is no land between S. latitude 80 and the

pole. On the first hypothesis it was found that the fraction of

the whole earth s surface which consists of land is -^j of 202 9

= -283, and in the second that the same proportion is -^^ of

200-2 =-278. Kigaud* has estimated the proportion as -266;

if then it be considered that he too could have no information

as to antarctic land, and that the Mediterranean Sea is here

treated as solid, it appears that the representation of the

continents by square blocks of land has been very satisfactory.

The numerator for the expression for & was found to be 7 8 7

or 2 &quot;5 3 according to the two hypotheses. Hence we have

7ft7M = -0152, with antarctic continent

and

517-1

-2-53

519-8
= -00486, without antarctic continent

i(l + 0) will be found to be equal sin
2 34 40 or sin

2 34 57 .

Since J-is sin
2 35 16

,
it follows that the latitude of evanescent

fortnightly and monthly tides is very littie affected by the

distribution of land and water on the earth s surface.

In the reductions of the tidal observations I have put

(! + $)_ sin
2
1 = sin (35

-
1)

sin (35 +
1).

Thus from (6) we have

= f Ta (1 -fe
2

)
sin

2/ sin (35
- Q sin (35 +

I)
cos 2

(&amp;lt;r-fy

= | rae (1
- f sin

2

/) sin (35
-

1) sin (35 +
1) cos

(or*
-
w) }

* Trans. Cam. Phil. Soc. Vol. 6.
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Taking E/M= 82 , c/a = 60-27; a = 20 9 x 10
6

feet, it will be

found that

feet.

If we take CD =23 28
,

i = 59
,

the maximum, mean and Maximum,

minimum values of / are 28 37
,
2328 /

,
18 19 . Then with Smum

e = -054908, it will be found that SriShfeet.

r298, when 7-28 37
,

| to, (1
-
f e

2

)
sin

2 7 .
|206,

when 1= 23 28
,

(-128, when 7=18 19
;

,-094, when 7 = 28 37
,

f Te(l-f sin
2

7)= |l09,
when 7 = 23 28

,

(-123, when 1= 18 19 .

These numbers are given in feet, and the equatorial semi-ranges
of the &amp;lt; and

/x,
tides are (since sin

2 35 = | nearly) about one-

third of these numbers. At the time when 7 is a minimum

these two tides have approximately equal ranges ;
but when 7

is a maximum the fortnightly is three times as great as the

monthly tide.

(d) In the Eeports of the British Association, and in the Preparation

Tide-tables for the Indian Ports&quot;* for 1881 and 1882, the tiouby&quot;

&quot;

results of the harmonic analysis of the tidal observations are squares.

given in the form R cos (nt
-

e), where R, the semi-range of tide,

is expressed in British feet, n is the speed of the particular tide

in question, and e, the retardation of phase (or shortly the phase),

is an angle less than 360.

In the case of the fortnightly and monthly tides n is respec

tively 2o- and cr TX
}

,
where w^ is the angular velocity of the

lunar perigee and therefore -cs-w^t. (In the Tidal Report of

1872 that which is here called w
l
is denoted as OT.)

Now in order to compare the observed fortnightly tide with

its theoretical value, we must write the observation in the

form

Or if we put -=
* These tables were prepared under the direction of Captain (now Major)

A. W. Baird, E.E., and Mr E. Koberts, and are published by
&quot;

authority of the

.Secretary of State for India in Council.&quot;
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the observation becomes

[848.

(16).

In the case of the monthly tide, if we put

the result of observation becomes

Ccos (at
-

OT) + D sin (at
-

-sr) ............ (18).

The expressions for the theoretical equilibrium fortnightly

and monthly tides are given in (14). If however the solid

earth yields tidally, either as an elastic body, or as a viscous one,

the height of the tide will fall below its equilibrium value.

Moreover on the hypothesis of viscosity the phase of the tide

will be affected
;

a result which would also follow from the

effects of fluid friction.

Thus the actual fortnightly and monthly tides must be ex

pressed in the forms

Theoretical

expression
for the tides
when the
earth yields
bodily, and

&amp;lt;j&amp;gt;

when there
is friction, fj.

= frae (1
- f sin2

/) sin (35
-

Z)
sin (35 + 1) [u cos (at

-
-cr) + v sin (at

- &
} } j

\ra (I
- fe

2
)
sin2 1 sin (35

-
I) sin (35 + 1) \

x cos 2
(&amp;lt;rt

-
) + y sin 2 (et

-
) h

19,

Equations
for reduc
tion by least

squares.

where x, y, u, v are numerical coefficients. If the equilibrium

theory be nearly true (compare 808 above) for the fortnightly

and monthly tides, y and v will be small
;
and x and u will be

fractions approaching unity, in proportion as the rigidity of the

earth s mass approaches infinity.

If we now put

a = f ra (1
-
1 e

2

)
sin

2 /sin (35 -Q sin (35 +
l)&quot;\

c = *rae (1
-
f sin

2

/) sin (35
-

1)
sin (35 + 1)}

&quot;(
20

)&amp;gt;

then for the fortnightly tide

\ffi = A^

(21),

and for the monthly tide

cv

= Oi

= DJ .(^22).

Every set of tidal observations will give equations for x, y, u, v;

and the most probable values of these quantities must be deter

mined by the method of least squares.
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For places north of 35 N. lat., or south of 35 S. lat. the Equations
for redue-

coefficients a and c become negative. This would be incon- tion by

venient for the arithmetical operations of reduction, and therefore squares.

for such places it is convenient to subtract 180 from the phases

e 2, and c which occur in the expressions for A, B, C, D;
after doing this the coefficients a and c may in all cases be

treated as positive, for we may suppose (35) to be taken

for places in the northern hemisphere North of 35, and 35 - I

for places in the same hemisphere to the South of 35; and

similarly for the southern hemisphere.

(e\ In collecting the results of tidal observation I have Numerical

to thank Sir William Thomson, General Strachey, and Major harmonic

Baird for placing all the materials in my hands, and for giving tidal obser-

me every facility. As above stated the observations are to

be found in the British Association Reports for 1872 and 1876,

and in the Tide-tables of the Indian Government.

The results of the harmonic analysis of the tidal observations

are given altogether for 22 different ports, but of these only 14

are here used. The following are the reasons for rejecting

those made at 8 out of the 22 ports.

One of these stations is Cat Island in the Gulf of Mexico ;

this place, in latitude 30 14 N., lies so near to the critical

latitude of evanescent fortnightly and monthly tides, that con

sidering the uncertainty in the exact value of that latitude, it

is impossible to determine the proper weight which should be

assigned to the observation. The result only refers to a single

year, viz. 1848, and as its weight must in any case be very

small, the omission can exercise scarcely any effect on the result.

Another omitted station is Toulon ;
this being in the Mediter

ranean Sea cannot exhibit the true tide of the open ocean.

Another is Hanstal in the Gulf of Cutch. The result is given

in an Indian Blue Book. I do not know the latitude, and

General Strachey informs me that he believes the observations

were only made during a few months for the purpose of deter

mining the mean level of the sea, for the levelling operations of

the great survey of India.

The other omitted stations are Diamond Harbour, Fort

Gloster and Kidderpore in the Hooghly estuary, and Rangoon,
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Numerical
results of
harmonic
analysis of
tidal obser
vations.

and Moulmein. All these are river stations, and they all ex

hibit long period tides of such abnormal height as to make it

nearly certain that the shallowness of the water has exercised

a large influence on the results. The observations higher up
the Hooghly seem more abnormal than those lower down. I

also learn that the tidal predictions are not found to be satis

factory at these stations.

The following tables exhibit the results for the 14 remaining

ports. The rows 7? and e are extracted from the printed tidal

results, and the rest of the values are the reductions effected

in accordance with the investigations of the preceding sections.

It has already been explained why, in the case of the fortnightly

tide, e - 2v is given in place of the more correct e - 2 It must

also be added that in many cases there is no information as to

the days on which the observations began and ended; it was

thus impossible to use the rigorously correct value for v, namely
that corresponding to the middle day of the period embraced

by the observations. These details might no doubt have been

obtained by means of correspondence with various persons in

India
;
but considering the uncertainty in the tabular results

it did not seem worth while to incur this delay.

Sir William Thomson placed in my hands a table of the

values of / and v corresponding to the 1st of July of each year.

Accordingly when the observations are stated to be, for example,

for 1874 5, I assume that the observations began early in

1874, and the values for / and v for July 1, 1874, are used. In

several cases it appears that the observations began in March,

and here but little error has been incurred. In the few cases

in which only a single year is named (e.g. Ramsgate), it is

assumed that values for July 1 will be proper.

No attempt has been made to assign weight to each year s

observations according to the exact number of months over

which the tidal records extend. The data for such weighting

are in many cases wanting. In computing the value for a the

factor 1 fe
2 was omitted, but it has been introduced finally as

explained below.
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INDIAN PORTS (continued).

[Indian Tide Tables, 1881-2.]

Monthly

Tide.

Fortnightly

Tide.
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Then according to the method of least squares, the following are Results of

iiTi reduction.
the most probable values of x, y, u, v.

[Aa] [Ba] [Cc] [Dc]= =

And if m be the number of observations (which in the present

case is 33) the mean errors of x, y, u, v are respectively

J_ /[AA][aa]-[Aa]
2

1_ /[BE] [aa]
-
[Ba]

2

[aa]V
&quot;

m-l [aa] V
&quot;

m-l

J_ /[Cq[oc]-[0c]
2 1 /[DP][cc]-[Dc]

2

[cc]V m-l [cc]V m-l
The probable errors are found from the mean errors by multi

plying by -6745.

I thus find that

a = -675 056, y = 020 &quot;05,5, u = 680 258, v = 090 218.

The smallness of the values of y and v is satisfactory; for, as

stated above
(

848 (d)), if the equilibrium theory were true for

the two tides under discussion, they should vanish. Moreover

the signs are in agreement with what they should be, if friction

be a sensible cause of tidal retardation. Bat considering the

magnitude of the probable errors, it is of course rather more

likely that the non-evanescence of y and v is due to errors of

observation*.

If the solid earth does not yield tidally, and if the equi
librium theory is fulfilled, x and u should each be approximately

*
Shortly after these computations were completed Professor Adams hap

pened to observe a misprint in the Tidal Report for 1872. This Eeport gives

the method employed in the reduction by harmonic analysis of the tidal obser

vations, and the erroneous formula relates to the reduction of the tides of long

period. On inquiring of Mr Eoberts, who has superintended the harmonic

analysis, it appears that the erroneous formula has been throughout used in the

reductions. A discussion of this mistake and of its effects will be found in a

paper communicated to the British Association by me in 1882. It appears that

the values of the fortnightly tide are not seriously vitiated, but the monthly

elliptic tide will have suffered much more. This will probably account for the

large probable error which I have found for tbe value of the monthly tide. If a

recomputation of all the long-period tides should be carried out, I think there is

good hope that the probable error of the value of the fortnightly tide may also

be reduced.

It appears from a communication from Major Baird, E.E., that the erroneous

formula referred to has not been used in the reduction of the Indian Tidal

Observations (March 20, 1883).
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unity, and if it yields tidally they should have equal values.

The very close agreement between them is probably somewhat
due to chance. From this point of view it seems reasonable to

combine all the observations, resulting from 66 years of obser

vation, for both sorts of tides together.

Then writing X and 7 for the numerical factors by which
the equilibrium values of the two components of either tide are

to be multiplied in order to give the actual results, I find

X = -676 -076, F= -029 065.

Tidal yield- These results really seem to present evidence of a tidal

earth s yielding of the earth s mass, showing that it has an effective

Rigidity rigidity about equal to that of steel *.
about equal

greater But this result is open to some doubt for the following
than that
of steel. reason :

Taking only the Indian results (48 years in all), which are

much more consistent than the English ones, I find

X= -931 -056, T= 155 068.

We thus see that the more consistent observations seem to

bring out the tides more nearly to their theoretical equilibrium-
values with no elastic yielding of the solid.

It is to be observed however that the Indian results being
confined within a narrow range of latitude give (especially when

we consider the absence of minute accuracy in the evaluation of

(JB in 848 (c)) a less searching test for the elastic yielding, than

a combination of results from all latitudes.

On the whole we may fairly conclude that, whilst there is

some evidence of a tidal yielding of the earth s mass, that

yielding is certainly small, and that the effective rigidity is at

least as great as that of steel.

*
It is remarkable that elastic yielding of the upper strata of the earth, in

the case where the sea does not cover the whole surface, may lead to an apparent

augmentation of oceanic tides at some places, situated on the coasts of conti

nents. This subject is investigated in the Keport for 1882 of the Committee of

the British Association on &quot; The Lunar Disturbance of Gravity.&quot; It is there,

however, erroneously implied that this kind of elastic yielding would cause an

apparent augmentation of tide at all stations of observation.



APPENDIX TO CHAPTER VII

The following Appendices are reprints of papers published at various times.

Excepting where it is expressly so stated, or where it is obvious from the

context, they speak as from the date of publication. The marginal notes

hoivever to the appendices which appeared in the first edition speak as at the

date of issue of that edition, viz. 1867; in the new appendices the marginal

notes are now added for the first time.

(C.) EQUATIONS OF EQUILIBRIUM OF AN ELASTIC SOLID

DEDUCED FROM THE PRINCIPLE OF ENERGY*.

(a) Let a solid composed of matter fulfilling no condition of

isotropy in any part, and not homogeneous from part to part,

be given of any shape, unstrained, and let every point of its

surface be altered in position to a given distance in a given

direction. It is required to find the displacement of every point

of its substance, in equilibrium. Let x, y, z be the co-ordinates

of any particle, P, of the substance in its undisturbed position, and

x + a, y + /?, z + y its co-ordinates when displaced in the manner strain of

specified : that is to say, let a, (3, y be the components of the ti

required displacement. Then, if for brevity we put element&quot;.*&quot;

/da
A
-(d^

+
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Strain speci
fied by six

elements.

substance infinitely near the particle P (irrespectively of any
rotation it may experience), in the following manner:

(b.) Let
, rj,

be the undisturbed co-ordinates of a particle

infinitely near P, relatively to axes through P parallel to those

of x, 2/5 2 respectively ;
and let

/5 &amp;gt;?,, ,
be the co-ordinates

relative still to axes through P, when the solid is in its strained

condition. Then

V+%n+ff-W+W+W+*rt*W+**ti ...... (2);

and therefore all particles which in the strained state lie on a

spherical surface

Antici

patory ap
plication of
the Carnot
and Clau-
sius ther-

modynamic
law:

its combina
tion with
Joule s law
expressed
analytically
for elastic

solid.

Potential

energy of

deforma
tion;

a minimum
for stable

equilibrium.

are in the unstrained state, on the ellipsoidal surface,

A? + Bvf + C + 2art + 26& + 2cfr = rf.

This
(

155 165) completely defines the homogeneous strain of

the matter in the neighbourhood of P.

(c.) Hence, the thermodynamic principles by which, in a paper

on the &quot;Thermo-elastic Properties of Matter*,&quot; Green s dynamical

theory of elastic solids was demonstrated as part of the modern

dynamical theory of heat, show that if wdxdydz denote the work

required to alter an infinitely small undisturbed volume, dxdydz,

of the solid, into its disturbed condition, when its temperature

is kept constant, we must have

w=/(A,B,C,a,b,c) .................. (3)

where f denotes a positive function of the six elements, which

vanishes when A-\
t
B-\

t C-l, a, b, c each vanish. And if

W denote the whole work required to produce the change actually

experienced by the whole solid, we have

W = jjjwdxdydz ......................... (4)

where the triple integral is extended through the, space occupied

by the undisturbed solid.

(d.)
The position assumed by every particle in the interior of

the solid will be such as to make this a minimum subject to the

condition that every particle of the surface takes the position

given to it; this being the elementary condition of stable equili

brium. Hence, by the method of variations

Q ..................... (5).

*
Quarterly Journ. of Math., April, 1855, or Mathematical and Physical

Papers by Sir W. Thomson, 1882, Art. XLVIII. Part vn.
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But, exhibiting only terms depending on 8a, we have Potential

energy of
deforma
tion;

a minimum
for stable

dw da dw da dw /da \\
dSa equilibrium.

dw /da \ dw da dvj da~\ dSa

dA\dx J db dz dc dy) dx

{

dw da dw da
2 1

dB dy da dz
&quot; %

!_

dw da dw da dw /da n \) dSa
* ~J7i ~r + ~~7 7~ + ~rr ( T~ + 1 )r ~r~dC dz da dy db \dx J j dz

+ etc.

Hence, integrating by parts, and observing that 8a, 8/?, Sy vanish

at the limiting surface, we have

8W= [ffdxdydz &amp;lt;( 7
- + -^-+-7-)8a+ etc. &amp;gt; (6)

(\dx dy dz) )

where for brevity P, Q, R denote the multipliers of -=^ . -^ ,

~
dx ay dz

respectively, in the preceding expression. In order that 8W may
vanish, the multipliers of 8a, 8/3, 8y, in the expression now found

for it, must each vanish, and hence we have, as the equations of

equilibrium

dw Equations
of internal

equilibrium
of an elastic
solid experi
encing no

//7\ bodily force.

V/i

^
da \ dw da dw da}

dx dA\d^
+

J
+

db ~dz
+

~dc d~y]

L jl (9^ C
1^L

dw da dw /da - \
\

dy\ ll$dy da dz dc \dx J)

d ( dw da dw da dw /da _ \
|

*Tz\ clCd^
+
d^d^

+
~db \dx

+
Jj

etc. etc.

of which the second and third, not exhibited, may be written

down merely by attending to the symmetry.

(e.)
From the property of w that it is necessarily positive when

there is any strain, it follows that there must be some distribu

tion of strain through the interior which shall make Jffwdxdydz
the least possible, subject to the prescribed surface condition; and

therefore that the solution of equations (7) subject to this con- tion proved

dition, is possible. If, whatever be the nature of the solid as unique

to difference of elasticity in different directions, in any part, and face dis-

as to heterogeneity from part to part, and whatever be the is

extent of the change of form and dimensions to which it is can be un-

subjected, there cannot be any internal configuration of unstable iibrium?
U1 ~
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nence neces
sarily uni

que for a
homogene
ous solid.

Extension
of the ana
lysis to in

clude bodily
force, and
data of sur
face easy.

Transition
to case of in

finitely
small
strains.

Green s

theory:

equilibrium, nor consequently any but one of stable equilibrium,

with the prescribed surface displacement, and no disturbing force

on the interior
; then, besides being always positive, w must be

such a function of A, , etc., that thee can be only one solution

of the equations. This is obviously the case when the unstrained

solid is homogeneous.

(f.) It is easy to include, in a general investigation similar to

the preceding, the effects of any force on the interior substance,

such as we have considered particularly for a spherical shell, of

homogeneous isotropic matter, in 730. ..737 above. It is also

easy to adapt the general investigation to superficial data offorce,

instead of displacement.

(g-) Whatever be the general form of the function f for any

part of the substance, since it is always positive it cannot change

in sign when A 1, B 1, C -
1, a, b, c, have their signs changed;

and therefore for infinitely small values of these quantities it must

be a homogeneous quadratic function of them with constant co

efficients. (And it may be useful to observe that for all values of

the variables A, , etc., it must therefore be expressible in the

same form, with varying coefficients, each of which is always

finite, for all values of the variables.) Thus, for infinitely small

strains we have Green s theory of elastic solids, founded on a

homogeneous quadratic function of the components of strain, ex

pressing the work required to produce it. Thus, putting

A-l = 2e, -l =
2f, (7-1 = 20 ............ (8)

and denoting by \ (e, e), *(/,/),... (e, /),... (e, a),... the coeffi

cients, we have, as above
( 673),

i {(e, e) e
2

(
e

&amp;gt;f)
ef

(g, g) 9*

(e &amp;gt; 9) e9 &amp;gt;

a
)
ea cec

+ (g, a) ga + (g, b) gb + (g, c) gc

(b,c)bc -

(k.) When the strains are infinitely small the products ^j ,

J 1^
etc., are each infinitely small, of the second order. We

do dz
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therefore omit them
;
and then attending to (8), we reduce Case of

infinitely

(7) to small
strains :

d dw d dw d dw .

^. _j
__ Q

dx de dy dc dz db
dynamic
equations
of internal

d dw d dw d dw- - + - - + - - = () ^ /I r\\ OI 111 It:.

dxdc dydf dzda I
.............

(
10

). equili-
brium:

d dw d dw d dw ._ _ i__ _ i _ _ . Q
dx db dy da dz dg

which are the equations of interior equilibrium. Attending to

(9) we see that ... -T-... are linear functions of e, f, g, a,

b, c the components of strain. Writing out one of them as an

example we have

de
=

(* ^ e +

And, a, /?, y denoting, as before, the component displacements of

any interior particle, P, from its undisturbed position (x, y, z)

we have, by (8) and (1)

_ da
d[3 _dy6 ~

dx ^ ~
dy

g ~ dz and relative

....... (12). kinematic

dp dy . dy da a equations.

a= f +-J
L

,
b=-Jt+

az ay dx dz

It is to be observed that the coefficients
(e, e), (e,f), etc., will be

in general functions of
(x, y, 2), but will be each constant when

the unstrained solid is homogeneous.

(i.)
It is now easy to prove directly, for the case of infinitely

small strains, that the solution of the equations of interior equi

librium, whether for a heterogeneous or a homogeneous solid, Solution

proved

subject to the prescribed surface condition, is unique. For, let unique

a
&amp;gt; P) y be components of displacement fulfilling the equations, the&quot;body

and let a
, /? , y denote any other functions of x

} y, z, having peneous or

the same surface values as a, /?, y, and let e, / ,..., w denote

functions depending on them in the same way as e, f, ..., w de-

pend on a, /?, y.
Thus by Taylor s theorem,

is given:

where H denotes the same homogeneous quadratic function of

VOL, ii. 30
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Case of in

finitely
small
strains :

solution not

necessarily
unique,
when the
surface data
are of force.

Condition
that sub
stance may
be isotropic,

\yithout
limitation
to infinitely
email
strains :

e -e, etc., that w is of e, etc. If for e -e, etc., we substitute

their values by (12), this becomes

w dwd(a! a) dw d (a
- a) dw d (a - a)_ up A t + v

_j_
&amp;gt; /

de dx db dz dc dy
+ etc. + H.

Multiplying by dxdydz, integrating by parts, observing that

a a, (3 (3, y
-
y vanish at the bounding surface, and taking

account (10), we find simply

fjf(w
-
w) dxdydz = fffHdxdydz ............... (13).

But If is essentially positive. Therefore every other interior

condition than that specified by a, ft, -y, provided only it has the

same bounding surface, requires a greater amount of work than

w to produce it : and the excess is equal to the work that would

be required to produce, from a state of no displacement, such a

displacement as superimposed on a, /?, y,
would produce the

other. And inasmuch as a, /?, y, fulfil only the conditions of

satisfying (11) and having the given surface values, it follows

that no other than one solution can fulfil these conditions.

(j.) But (as has been pointed out to us by Stokes) when the

surface data are of force, not of displacement, or when force acts

from without, on the interior substance of the body, the solution

is not in general unique, and there may be configurations of

unstable equilibrium even with infinitely small displacement.

For instance, let part of the body be composed of a steel-bar

magnet ;
and let a magnet be held outside in the same line, and

with a pole of the same name in its end nearest to one end of the

inner magnet. The equilibrium will be unstable, and there will

be positions of stable equilibrium with the inner bar slightly in

clined to the line of the outer bar, unless the rigidity of the rest

of the body exceed a certain limit.
f

(k.) Recurring to the general problem, in which the strains are

not supposed infinitely small
;
we see that if the solid is isotropic

in every part, the function of A, B, C, a, b, c which expresses

w, must be merely a function of the roots of the equation

[
181 (H)]

which (that is the positive values of
)
are the ratios of elonga-

tion along the principal axes of the strain- ellipsoid. Jt is un-
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necessary here to enter on the analytical expression of this

condition. For in the case of A -I, 1, (71, a, b, c each

infinitely small, it obviously requires that

= 0; and . ..(15).

(e, b)= (e, c)
=

(f, c)
= (f) a)

=
(g, )= (&amp;lt;?, 6)

= 0.

Thus the 21 coefficients are reduced to three

(e, e) which we may denote by the single letter

(a, a) n.

It is clear that this is necessary and sufficient for insuring cubic expressed in

isotropy ; that is to say, perfect equality of elastic properties among the

with reference to the three rectangular directions OX, OY, OZ. elasticity

But for spherical isotropy, or complete isotropy with reference to infinitely

all directions through the substance, it is further necessary that strains.

&-3B = 2w .............................. (16);

as is easily proved analytically by turning two of the axes of

co-ordinates in their own plane through 45; or geometrically

by examining the nature of the strain represented by any one of

the elements a, 6, c (a simple shear) and comparing it with the

resultant of c, and f = e (which is also a simple shear). It is

convenient now to put

& + 33 = 2w; sothat& = m + w, W =m-n ............ (17);

and thus the expression for the potential energy per unit of

volume becomes

Using this in
(9), and substituting for e,f, g, a, b, c their values

by (12), we find immediately the equations of internal equi- in itotropic

librium, which are the same as (6) of 698.
solicL

(I.)
To find the mutual force exerted across any surface within

the solid, as expressed by (1) of 662, we have clearly, by con

sidering the work done respectively by P, Q, R, S, T, U ( 662)
on any infinitely small change of figure or dimensions in the

Solid, Components
of stress re-

dw _dw dw dw dw dw
de df dg da db dc strain.

302
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Hence, for an isotropic solid, (18) gives the expressions which we
have used above, (12) of 673.

(m.) To interpret the coefficients m and n in connexion with

elementary ideas as to the elasticity of the solid : first let

a = b = c = 0, and e =f= g = ^8: in other words, let the substance

experience a uniform dilatation, in all directions, producing an

expansion of volume from 1 to 1 + 8. In this case (18) becomes

and we have

Hence (m ^n) 8 is the normal force per unit area of its surface

required to keep any portion of the solid expanded to the amount

specified by 8. Thus m ^n measures the elastic force called

out by, or the elastic resistance against, change of volume : and

viewed as a modulus of elasticity, it may be called the bulk-

modulus. [Compare 692, 693, 694, 688, 682, and 680.]

What is commonly called the
&quot;compressibility&quot;

is measured by

And let next e f= g = b = c = Q; which gives

10 = \na?\ and, by (19), S = na.

This shows that the tangential force per unit area required to

produce an infinitely small shear
( 171), amounting to a, is na.

Hence n measures the innate power of the body to resist change

of shape, and return to its original shape when force has been

applied to change it : that is to say, it measures the rigidity of

the substance.

Appendix D.

Dissipation
of energy
disregarded
by m.iny
followers of
Button.

(D). ON THE SECULAR COOLING OF THE EARTH*.

(a.) For eighteen years it has pressed on my mind, that

essential principles of Thermo-dynamics have been overlooked

by those geologists who uncompromisingly oppose all paroxysmal

hypotheses, and maintain not only that we have examples now

before us, on the earth, of all the different actions by which its

crust has been modified in geological history, but that these

actions have never, or have not on the whole, been more violent

in past time than they are at present.

Transactions of the Royal Society of Edinburgh, 1862 (W. Thomson).
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(b.)
It is quite certain the solar system cannot have gone on, Dissipation

even as at present, for a few hundred thousand or a few million fromTif/

years, without the irrevocable loss (by dissipation, not by anni- system.

hilation) of a very considerable proportion of the entire energy

initially in store for sun heat, and for Plutonic action. It is

quite certain that the Avhole store of energy in the solar system

has been greater in all past time than at present ;
but it is con

ceivable that the rate at which it has been drawn upon and dis

sipated, whether by solar radiation, or by volcanic action in the

earth or other dark bodies of the system, may have been nearly

equable, or may even have been less rapid, in certain periods of

the past. But it is far more probable that the secular rate of

dissipation has been in some direct proportion to the total amount

of energy in store, at any time after the commencement of the

present order of things, and has been therefore very slowly

diminishing from age to age.

(c.) I have endeavoured to prove this for the sun s heat, in an Terrestrial

article recently published in MacmillarisMagazinefila.YchlSGZ)*, fluencedby

where I have shown that most probably the sun was sensibly babfyhotter

hotter a million years ago than he is now. Hence, geological million
a

speculations assuming somewhat greater extremes of heat, more yeai

violent storms and floods, more luxuriant vegetation, and hardier

and coarser grained plants and animals, in remote antiquity, are

more probable than those of the extreme quietist, or &quot;uni-

formitarian&quot; school. A middle path, not generally safest in

scientific speculation, seems to be so in this case. It is probable
that hypotheses of grand catastrophes destroying all life from

the earth, and ruining its whole surface at once, are greatly in

error
;

it is impossible that hypotheses assuming an equability

of sun and storms for 1,000,000 years, can be wholly true.

(d.) Fourier s mathematical theory of the conduction of heat

is a beautiful working out of a particular case belonging to the

general doctrine of the &quot;Dissipation of Energy f.&quot;
A character

istic of the practical solutions it presents is, that in each case a

*
Eeprinted as Appendix E, below.

f Proceedings of Royal Soc. Edin., Feb. 1852. &quot; On a universal Tendency
in Nature to the Dissipation of Mechanical Energy,&quot; Mathematical and Physical

Papers, by Sir W. Thomson, 1882, Art. LIX. Also, &quot;On the Eestoration of Energy
in an unequally Heated Space,&quot; Phil. Mag., 1853, first half year, Mathematical

and Physical Papers, by Sir W. Thomson, 1882, Art. LXII.
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distribution of temperature, becoming gradually equalized through
an unlimited future, is expressed as a function of the time, which

is infinitely divergent for all times longer past than a definite

determinable epoch. The distribution of heat at such an epoch
is essentially initial that is to say, it cannot result from any

previous condition of matter by natural processes. It is, then,

well called an &quot;arbitrary initial distribution of heat,&quot; in Fourier s

great mathematical poem, because that which is rigorously ex

pressed by the mathematical formula could only be realized by
action of a power able to modify the laws of dead matter. In an

article published about nineteen years ago in the Cambridge
Mathematical Journal*, I gave the mathematical criterion for an

essentially initial distribution; and in an inaugural essay, &quot;De

Motu Caloris per Terra?
Corpus,&quot;

read before the Faculty of the

University of Glasgow in 1846, I suggested, as an application

of these principles, that a perfectly complete geothermic survey

would give us data for determining an initial epoch in the pro

blem of terrestrial conduction. At the meeting of the British

Association in Glasgow in 1855, I urged that special geothermic

surveys should be made for the purpose of estimating absolute

dates in geology, and I pointed out some cases, especially that

of the salt-spring borings at Creuznach, in Rhenish Prussia, in

which eruptions of basaltic rock seem to leave traces of their

igneous origin in residual heatt. I hope this suggestion may yet

be taken up, and may prove to some extent useful
;
but the dis

turbing influences affecting underground temperature, as Pro

fessor Phillips has well shown in a recent inaugural address to

the Geological Society, are too great to allow us to expect any

very precise or satisfactory results^:.

(e.)
The chief object of the present communication is to esti

mate from the known general increase of temperature in the

earth downwards, the date of the first establishment of that con

sistentior status, which, according to Leibnitz s theory, is the

initial date of all geological history.

* Feb. 1844. &quot;Note on Certain Points in the Theory of Heat,&quot; Mathemati

cal and Physical Papers, by Sir W. Thomson, 1882, Vol. i. Art. x.

+ See British Association Keport of 1855 (Glasgow) Meeting.

J Much work in the direction suggested above has been already carried out

by the Committee of the British Association, on Underground Temperature.
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(j) In all parts of the world in which the earth s crust has Increase of

been examined, at sufficiently great depths to escape large in- downwards

fluence of the irregular and of the annual variations of the super- crust; but

ficial temperature, a gradually increasing temperature has been plrfecSy

found in going deeper. The rate of augmentation (estimated at hitherto,

only yy^tli of a degree, Fahr., in some localities, and as much
as y^th of a degree in other, per foot of descent) has not been

observed in a sufficient number of places to establish any fair

average estimate for the upper crust of the whole earth. But

^yth is commonly accepted as a rough mean; or, in other words,

it is assumed as a result of observation, that there is, on the

whole, about lFahr. of elevation of temperature per 50 British ^/^
feet of descent.

(g.) The fact that the temperature increases with the depth Secular loss

implies a continual loss of heat from the interior, by conduction of the earth
demon-

outwards through or into the upper crust. Hence, since the strated:

upper crust does not become hotter from year to year, there

must be a secular loss of heat from the whole earth. It is pos

sible that no cooling may result from this loss of heat, but only

an exhaustion of potential energy, which in this case could

scarcely be other than chemical affinity between substances but not so

forming part of the earth s mass. But it is certain that either or paSf*
6

the earth is becoming on the whole cooler from age to age, or

the heat conducted out is generated in the interior by temporary

dynamical (that is, in this case, chemical) action*. To suppose,
as Lyell, adopting the chemical hypothesis, has donef, that the

substances, combining together, may be again separated electro -

lytically by thermo-electric currents, due to the heat generated Fallacy of

by their combination, and thus the chemical action and its heat electric

continued in an endless cycle, violates the principles of natural motion,

philosophy in exactly the same manner, and to the same degree,

as to believe that a clock constructed with a self-winding move
ment may fulfil the expectations of its ingenious inventor by

going for ever.

* Another kind of dynamical action, capable of generating heat in the interior

of the earth, is the friction which would impede tidal oscillations, if the earth

were partially or wholly constituted of viscous matter. See a paper by Mr Gr. H.

Darwin, &quot;On problems connected with the tides of a viscous spheroid.&quot; Phil.

Trans. Part n. 1879.

t Principles of Geology, chap. xxxi. ed. 1853.
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(h.) It must indeed be admitted that many geological writers

of the &quot;

Uniformitarian&quot; school, who in other respects have

taken a profoundly philosophical view of their subject, have

argued in a most fallacious manner against hypotheses of violent

action in past ages. If they had contented themselves with

showing that many existing appearances, although suggestive of

extreme violence and sudden change, may have beeu brought
about by long-continued action, or by paroxysms not more in

tense than some of which we have experience within the periods

of human history, their position might have been unassailable ;

and certainly could not have been assailed except by a detailed

discussion of their facts. It would be a very wonderful, but not

an absolutely incredible result, that volcanic action has never

been more violent on the whole than during the last two or three

centuries; but it is as certain that there is now less volcanic

energy in the whole earth than there was a thousand years ago,

as it is that there is less gunpowder in a &quot;Monitor&quot; after she

has been seen to discharge shot and shell, whether at a nearly

equable rate or not, for five hours without receiving fresh sup

plies, than there was at the beginning of the action. Yet this

truth has been ignored or denied by many of the leading geolo

gists of the present day *, because they believe that the facts within

their province do not demonstrate greater violence in ancient

changes of the earth s surface, or do demonstrate a nearly equable

action in all periods.

(i.)
The chemical hypothesis to account for underground heat

might be regarded as not improbable, if it was only in isolated

localities that the temperature was found to increase with the

depth; and, indeed, it can scarcely be doubted that chemical

action exercises an appreciable influence (possibly negative, how

ever) on the action of volcanoes
;
but that there ;is slow uniform

&quot;combustion,&quot; eremacausis, or chemical combination of any kind

going on, at some great unknown depth under the surface every

where, and creeping inwards gradually as the chemical affinities

in layer after layer are successively saturated, seems extremely

improbable, although it cannot be pronounced to be absolutely

impossible, or contrary to all analogies in nature. The less

* It must be borne in mind that this was written in 1862. The opposite

statement concerning the beliefs of geologists would probably be now nearer the

truth.
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hypothetical view, however, that the earth is merely a warm

chemically inert body cooling, is clearly to be preferred in the

present state of science.

(j.) Poisson s celebrated hypothesis, that the present under- Poisson s

ground heat is due to a passage, at some former period, of the ^account*

solar system through hotter stellar regions, cannot provide the

circumstances required for a palaeontology continuous through
that epoch of external heat. For from a mean of values of the wit

P
hout

ble

conductivity, in terms of the thermal capacity of unit volume, of
of

e

iif

r

e
UCtl011

the earth s crust, in three different localities near Edinburgh,
deduced from the observations on underground temperature
instituted by Principal Forbes there, I find that if the sup

posed transit through a hotter region of space took place

between 1250 and 5000 years ago, the temperature of that sup

posed region must have been from 25 to 50 Fahr. above the

present mean temperature of the earth s surface, to account for

the present general rate of underground increase of temperature,

taken as 1 Fahr. in 50 feet downwards. Human history nega
tives this supposition. Again, geologists and astronomers will,

I presume, admit that the earth cannot, 20,000 years ago, have

been in a region of space 100 Fahr. warmer than its present

surface. But if the transition from a hot region to a cool region Poisson s

supposed by Poisson took place more than 20,000 years ago, the Sfsprovedas

excess of temperature must have been more than 100 Fahr., and abfe m?tiga-

must therefore have destroyed animal and vegetable life. Hence, Leibnitz s

the further back and the hotter we can suppose Poisson s hot theory-

region, the better for the geologists who require the longest

periods ;
but the best for their view is Leibnitz s theory, which

simply supposes the earth to have been at one time an incan

descent liquid, without explaining how it got into that state. If

we suppose the temperature of melting rock to be about 10,000

Fahr. (an extremely high estimate), the consolidation may have

taken place 200,000,000 years ago. Or, if we suppose the

temperature of melting rock to be 7000 Fahr. (which is more

nearly what it is generally assumed to be), we may suppose the

consolidation to have taken place 98,000,000 years ago.

(&.)
These estimates are founded on the Fourier solution de- Probable

monstrated below. The greatest variation we have to make in uncertainty

them, to take into account the differences in the ratios of con- nuU m-
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ductivities to specific heats of the three Edinburgh rocks, is to

reduce them to nearly half, or to increase them by rather more

than half. A reduction of the Greenwich underground observa

tions recently communicated to me by Professor Everett of

Windsor, Nova Scotia, gives for the Greenwich rocks a quality

intermediate between those of the Edinburgh rocks. But we are

very ignorant as to the effects of high temperatures in altering

the conductivities and specific heats of rocks, and as to their

latent heat of fusion. We must, therefore, allow very wide

limits in such an estimate as I have attempted to make
;
but I

think we may with much probability say that the consolidation

cannot have taken place less than 20,000,000 years ago, or we

should have more underground heat than \ve actually have, nor

more than 400,000,000 years ago. or we should not have so much

as the least observed underground increment of temperature.

That is to say, I conclude that Leibnitz s epoch of emergence

of the consistentior status was probably between those dates.

(I.)
The mathematical theory on which these estimates are

founded is very simple, being, in fact, merely an application of

one of Fourier s elementary solutions to the problem of finding

at any time the rate of variation of temperature from point to

point, and the actual temperature at any point, in a solid extend

ing to infinity in all directions, on the supposition that at an

initial epoch the temperature has had two different constant

values on the two sides of a certain infinite plane. The solution

for the two required elements is as follows :

dv

dx

V

2 v C*i^Kt
,

7- di

where K denotes the conductivity of the solid, measured in terms

of the thermal capacity of the unity of bulk;

V, half the difference of the two initial temperatures;

V ,
their arithmetical mean;

t, the time;

x, the distance of any .point from the middle plane;

v, the temperature of the point x and t
,

and, consequently (according to the notation of the differential



D, I.]
COOLING OF THE EARTH. 475

calculus), dv/dx the rate of variation of the temperature per unit

of length perpendicular to the isothermal planes.

(ra.) To demonstrate this solution, it is sufficient to verify

(1.) That the expression for v satisfies Fourier s equation for

the linear conduction of heat, viz. :

dv dz
v

~di

= K
dx2

(2.) That when t = 0, the expression for v becomes v + V for all

positive, and v V for all negative values of x; and (3.) That the pr0c?

expression for dv/dx is the differential coefficient of the expres

sion for v with reference to x. The propositions (1.) and (3.) are

proved directly by differentiation. To prove (2.) we have, when

t = 0, and x positive,

X/^./O

or according to the known value, JV/TT,
of the definite integral

&amp;gt;

dze~ z
\ v ^v + V;

and for all values of t, the second term has equal positive and

negative values for equal positive and negative values of x, so

that when t = and x negative,

The admirable analysis by which Fourier arrived at solutions in

cluding this, forms a most interesting and important mathematical

study. It is to be found in his Theorie Analytique de la Chaleur.

Paris, 1822.

(n.) The accompanying diagram (page 477) represents, by two

curves, the preceding expressions for dv/dx and v respectively.

(o.) The solution thus expressed and illustrated applies, for a
Expression

tempera

Jfl
r

i?&amp;lt;5t

r

certain time, without sensible error, to the case of a solid sphere, temperature

primitively heated to a uniform temperature, and suddenly ex-
rrface

posed to any superficial action, which for ever after keeps the

surface at some other constant temperature. If, for instance,
cool:

the case considered is that of a globe 8000 miles diameter of

solid rock, the solution will apply with scarcely sensible error for

more than 1000 millions of years. For, if the rock be of a

certain average quality as to conductivity and specific heat, the

value of K, as found in a previous communication to the Royal
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Society,* will be 400, for unit of length a British foot and unit of
time a year; and the equation expressing the solution becomes

Distribution
of tempera
ture 100 mil
lion years
after com
mencement
of cooling
of a great
enough mass
of average
rock.

dx 354
^ji

and if we give t the value 1,000,000,000, or anything less, the

exponential factor becomes less than e~5 - 6

(which being equal
to about .5-^, may be regarded as insensible), when x exceeds

3,000,000 feet, or 568 miles. That is to say, during the first

1000 million years the variation of temperature does not become
sensible at depths exceeding 568 miles, and is therefore con

fined to so thin a crust, that the influence of curvature may be

neglected.

(p.) If, now, we suppose the time to be 100 million years from

the commencement of the variation, the equation becomes

dv

dx
~

3 T54X10

The diagram, therefore, shows the variation of temperature which
would now exist in the earth if, its whole mass being first solid

and at one temperature 100 million years ago, the temperature of

its surface had been everywhere suddenly lowered by V degrees,
and kept permanently at this lower temperature: the scales used

being as follows:

(1) For depth below the surface, scale along OX, length a,

represents 400,000 feet.

(2) For rate of increase of temperature per foot of depth,
scale of ordinates parallel to Y, length b, represents -g^V^ of

V per foot. If, for example, 7-7000 Fahr. this scale will

be such that b represents ^1^ of a degree Fahr. per foot.

(3) For excess of temperature, scale of ordinates parallel to

OY, length b, represents 7/^71-, or 7900, if V= 7000 Fahr.

Thus the rate of increase of temperature from the surface

downwards would be sensibly -jfa
of a degree per foot for the

first 100,000 feet or so. Below that depth the rate of increase

per foot would begin to diminish sensibly. At 400,000 feet it

would have diminished to about -^y of a degree per foot. At

* &quot; On the Periodical Variations of Underground Temperature.&quot; Trans.

Roy. Soc. Edin., March 1860.
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INCREASE OF TEMPERATURE DOWNWARDS IN THE EARTH.

ON=x. a = 2JKt.

dv V NP
= -

-.

dx a

NP=area -f-a= -
I ii dx.

a
] o

j

700(mitii:&quot;&quot;

OPQ curve showing excess of temperature above that of the surface.

AP R curve showing rate of augmentation of temperature downwards.

Distribution
of tempera
ture 100 mil
lion years
after com-
mencement
of cooling
of a great
enoughmass
of average

graphically
represented
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800,000 feet it would have diminished to less than - of its

initial value, that is to say, to less than ^FIT of a degree per

foot; and so on, rapidly diminishing, as shown in the curve.

Such is, on the whole, the most probable representation of the

earth s present temperature, at depths of from 100 feet, where

the annual variations cease to be sensible, to 100 miles; below

which the whole mass, or all except a nucleus cool from the

beginning, is (whether liquid or solid), probably at, or very

nearly at, the proper melting temperature for the pressure at

each depth.

(q.) The theory indicated above throws light on the question so

often discussed, as to whether terrestrial heat can have influenced

climate through long geological periods, and allows us to answer

it very decidedly in the negative. There would be an increment of

temperature at the rate of 2 Fahr. per foot downwards near the

surface 10,000 years after the beginning of the cooling, in the

case we have supposed. The radiation from earth and atmo

sphere into space (of which we have yet no satisfactory absolute

measurement) would almost certainly be so rapid in the earth s

actual circumstances, as not to allow a rate of increase of 2 Fahr.

per foot underground to augment the temperature of the surface

by much more than about 1; and hence I infer that the general

climate cannot be sensibly affected by conducted heat at anytime
more than 10,000 years after the commencement of superficial

solidification. No doubt, however, in particular places there

might be an elevation of temperature by thermal springs, or by

eruptions of melted lava, and everywhere vegetation would, for

the first three or four million years, if it existed so soon after

the epoch of consolidation, be influenced by the sensibly higher

temperature met with by roots extending a foot or more below

the surface.

(r.)
Whatever the amount of such effects is at any one time,

it would go on diminishing according to the inverse proportion of

the square roots of the times from the initial epoch. Thus, if at

10,000 years we have 2 per foot of increment below ground,

At 40,000 years we should have 1 per foot.

160,000 J

4,000,000

, 100,000,000

1 o

TIT

1

TO
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It is therefore probable that for the last 96,000,000 years the

rate of increase of temperature under ground has gradually

diminished from about TV^h to about -g^th of a degree Fahrenheit

per foot, and that the thickness of the crust through which any
stated degree of cooling has been experienced has in that

period gradually increased up to its present thickness from -Jth

of that thickness. Is not this, on the whole, in harmony with

geological evidence, rightly interpreted 1 Do not the vast masses

of basalt, the general appearances of mountain-ranges, the vio

lent distortions and fractures of strata, the great prevalence of

metamorphic action (which must have taken place at depths of

not many miles, if so much), all agree in demonstrating that the

rate of increase of temperature downwards musfc have been much

more rapid, and in rendering it probable that volcanic energy,

earthquake shocks, and every kind of so-called plutonic action,

have been, on the whole, more abundantly and violently opera

tive in geological antiquity than in the present age?

(s.} But it may be objected to this application of mathematical Objections
-

theory (1), That the earth was once all melted, or at least trial appii-

melted all round its surface, and cannot possibly, or rather cannot raised and

with any probability, be supposed to have been ever a uniformly

heated solid, 7000 Fahr. warmer than our present surface

temperature, as assumed in the mathematical problem ; and (2)

No natural action could possibly produce at one instant, and

maintain for ever after, a seven thousand degrees lowering of

the surface temperature. Taking the second objection first, I

answer it by saying, what I think cannot be denied, that a large

mass of melted rock, exposed freely to our air and sky, will, after

it once becomes crusted over, present in a few hours, or a few

days, or at the most a few weeks, a surface so cool that it can be

walked over with impunity. Hence, after 10,000 years, or,

indeed, I may say after a single year, its condition will be sensibly

the same as if the actual lowering of temperature experienced by
the surface had been produced in an instant, and maintained

constant ever after. I answer the first objection by saying, that

if experimenters will find the latent heat of fusion, and the varia

tions of conductivity and specific heat of the earth s crust up to

its melting point, it will be easy to modify the solution given

above, so as to make it applicable to the case of a liquid globe

gradually solidifying from without inwards, in consequence of
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heat conducted through the solid crust to a cold external medium.

In the meantime, we can see that this modification will not make

any considerable change in the resulting temperature of any

point in the crust, unless the latent heat parted with on solidifi

cation proves, contrary to what we may expect from analogy, to

be considerable in comparison with the heat that an equal mass

of the solid yields in cooling from the temperature of solidifica

tion to the superficial temperature. But, what is more to the

purpose, it is to be remarked that the objection, plausible as it

appears, is altogether fallacious, and that the problem solved

above corresponds much more closely, in all probability, with the

actual history of the earth, than does the modified problem sug

gested by the objection. The earth, although once all melted, or

melted all round its surface, did, in all probability, really become

a solid at its melting temperature all through, or all through the

outer layer, which had been melted
;
and not until the solidifica

tion was thus complete, or nearly so, did the surface begin to

cool. That this is the true view can scarcely be doubted, when

the following arguments are considered.

(t.)
In the first place, we shall assume that at one time the

earth consisted of a solid nucleus, covered all round with a very

deep ocean of melted rocks, and left to cool by radiation into

space. This is the condition that would supervene, on a cold

body much smaller than the present earth meeting a great number

of cool bodies still smaller than itself, and is therefore in accord

ance with what we may regard as a probable hypothesis regarding

the earth s antecedents. It includes, as a particular case, the

commoner supposition, that the earth was once melted through

out, a condition which might result from the collision of two nearly

equal masses. But the evidence which has convinced most geolo

gists that the earth had a fiery beginning, goes -but a very small

depth below the surface, and affords us absolutely no means of

distinguishing between the actual phenomena, and those which

would have resulted from either an entire globe of liquid rock,

or a cool solid nucleus covered with liquid to any depth exceed

ing 50 or 100 miles. Hence, irrespectively of any hypothesis

as to antecedents from which the earth s initial fiery condition

may have followed by natural causes, and simply assuming, as

rendered probable by geological evidence, that there was at one

time melted roek all over the surface, we need not assume the
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depth of this lava ocean to have been more than 50 or 100 miles;

although we need not exclude the supposition of any greater depth,

or of an entire globe of liquid.

(u.) In the process of refrigeration, the fluid must [as I have

remarked regarding the sun, in a recent article in Macmillan s

Magazine (March, 1862)*, and regarding the earth s atmosphere,

in a communication to the Literary and Philosophical Society of

Manchester f] be brought by convection, to fulfil a definite law of
^

distribution of temperature which I have called &quot;convective equi-
of tempera-

librium of temperature.&quot; That is to say, the temperatures at fined:

different parts in the interior must [in any great fluid mass

which is kept well stirred] differ according to the different pres

sures by the difference of temperatures which any one portion

of the liquid would present, if given at the temperature and pres

sure of any part, and then subjected to variation of pressure, but must have

prevented from losing or gaining heat. The reason for this is proximately

the extreme slowness of true thermal conduction
;
and the con- until solidi-

sequently preponderating influence of great currents throughout commenced.

a continuous fluid mass, in determining the distribution of tem

perature through the whole. .

(v.)
The thermo-dynamic law connecting temperature and

pressure in a fluid mass, not allowed to lose or gain heat, in

vestigated theoretically, and experimentally verified in the cases

of air and water, by Dr Joule and myselfJ, shows, therefore,

that the temperature in the liquid will increase from the surface

downwards, if, as is most probably the case, the liquid contracts

in cooling. On the other hand, if the liquid, like water near its

* See Appendix E, below.

t Proceedings, Jan. 1862. &quot; On the Convective Equilibrium of Temperature

hi the Atmosphere.&quot;

J Joule,
&quot; On the Changes of Temperature produced by the Earefaction and

Condensation of Air,&quot; Phil. Mag. 1845. Thomson, &quot;On a Method for Deter

mining Experimentally the Heat evolved by the Compression of Air
;&quot; Dynamical

Theory of Heat, Part IV., Trans. E. S. E., Session 1850-51; and reprinted

Phil. Mag. Joule and Thomson, &quot;On the Thermal Effects of Fluids in Motion,&quot;

Trans. E. S. Lond., June 1853 and June 1854. Joule and Thomson, On the

Alterations of Temperature accompanying Changes of Pressure in Fluids,&quot;

Proceedings R. S. Lond., June 1857. These articles, except the first by Joule,

are all now republished in Vol. I. Arts. XLVIII. and XLIX. of Mathematical and

Physical Papers, by Sir W. Thomson.

VOL. II. 31



482 APPENDIX D.

Alternative
cases as to
distribution
of tempera
ture&quot;before
solidifica

tion.

Effect of

pressure on
the tempe
rature of
solidifica

tion.

Question
whether
solidifica

tion com
menced at
surface or
centre or
bottom.

freezing-point, expands in cooling, the temperature, according

to the convective and thermo-dynamic laws just stated
( u, v),

would actually be lower at great depths than near the surface,

even although the liquid is cooling from the surface
;
but there

would be a very thin superficial layer of lighter and cooler liquid,

losing heat by true conduction, until solidification at the surface

would commence.

(w.) Again, according to the thermo-dynamic law of freezing,

investigated by my brother*, Professor James Thomson, and

verified by myself experimentally for water t, the temperature of

solidification will, at great depths, because of the great pressure,

be higher there than at the surface if the fluid contracts, or lower

than at the surface if it expands, in becoming solid.

(x.) How the temperature of solidification, for any pressure,

may be related to the corresponding temperature of fluid con

vective equilibrium, it is impossible to say, without knowledge,

which we do not yet possess, regarding the expansion with heat,

and the specific heat of the fluid, and the change of volume, and

the latent heat developed in the transition from fluid to solid.

(y.) For instance, supposing, as is most probably true, both

that the liquid contracts in cooling towards its freezing-point,

and that it contracts in freezing, we cannot tell, without definite

numerical data regarding those elements, whether the elevation

of the temperature of solidification, or of the actual temperature

of a portion of the fluid given just above its freezing-point, pro

duced by a given application of pressure is the greater. If the

former is greater than the latter, solidification would commence

at the bottom, or at the centre, if there is no solid nucleus to

begin with, and would proceed outwards
;
and there could be no

complete permanent incrustation all round the* surface till the

whole globe is solid, with, possibly, the exception of irregular,

comparatively small spaces of liquid.

(z.) If, on the contrary, the elevation of temperature, produced

* &quot; Theoretical Considerations regarding the Effect of Pressure in lowering

the Freezing-point of Water,&quot; Trans. E. S. E., Jan. 1849. Republished by

permission of the author, in Vol. I. (pp. 156 164) of Mathematical and Phy
sical Papers, by Sir W. Thomson, 1882.

h Proceedings R. S. E., Session 1849-50. Mathematical and Physical Papers,

by Sir W. Thomson, 1882, p. 165.
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by an application of pressure to a given portion of the fluid, is

greater than the elevation of the freezing temperature produced

by the same amount of pressure, the superficial layer of the fluid

would be the first to reach its freezing-point, and the first actually

to freeze.

(aa.) But if, according to the second supposition of v, the

liquid expanded in cooling near its freezing-point, the solid would

probably likewise be of less specific gravity than the liquid at its

freezing-point. Hence the surface would crust over permanently
with a crust of solid, constantly increasing inwards by the freez

ing of the interior fluid in consequence of heat conducted out

through the crust. The condition most commonly assumed by

geologists would thus be produced.

(bb.) But Bischof s experiments, upon the validity of which, Importance

as far as I am aware, no doubt has ever been thrown, show that mental in

vestigation
melted granite, slate, and trachyte, all contract by something of contrao

about 20 per cent, in freezing. We ought, indeed, to have more pansion of

experiments on this most important point, both to verify Bischofs rocks in

results on rocks, and to learn how the case is with iron and other tion.

unoxydised metals. In the meantime we must consider it as pro
bable that the melted substance of the earth did really contract

by a very considerable amount in becoming solid;

(cc.) Hence if, according to any relations whatever among the

complicated physical circumstances concerned, freezing did really

commence at the surface, either all round or in any part, before

the whole globe had become solid, the solidified superficial layer

must have broken up and sunk to the bottom, or to the centre,

before it could have attained a sufficient thickness to rest stably

on the lighter liquid below. It is quite clear, indeed, that if at Bischof s

any time the earth were in the condition of a thin solid shell of, proving
1611

let us suppose 50 feet or 100 feet thick of granite, enclosing a

continuous melted mass of 20 per cent, less specific gravity in its

upper parts, where the pressure is small, this condition cannot never ai*
8*

have lasted many minutes. The rigidity of a solid shell of super-
ficlal extent so vast in comparison with its thickness, must be as

nothing, and the slightest disturbance would cause some part to

bend down, crack, and allow the liquid to run out over the whole 1^^ the

solid. The crust itself would in consequence become shattered

into fragments, which must all sink to the bottom, or meet in

312
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the centre and form a nucleus there if there is none to begin
with.

(dd.) It is, however, scarcely possible, that any such continuous

crust can ever have formed all over the melted surface at one

time, and afterwards have fallen in. The mode of solidification

conjectured in y, seems on the whole the most consistent with

what we know of the physical properties of the matter concerned.

So far as regards the result, it agrees, I believe, with the view

adopted as the most probable by Mr Hopkins*. But whether

from the condition being rather that described in z, which

seems also possible, for the whole or for some parts of the hetero

geneous substance of the earth, or from the viscidity as of mortar,

which necessarily supervenes in a melted fluid, composed of in

gredients becoming, as the whole cools, separated by crystallizing

at different temperatures before the solidification is perfect, and

which we actually see in lava from modern volcanoes; it is pro

bable that when the whole globe, or some very thick superficial

layer of it, still liquid or viscid, has cooled down to near its tem

perature of perfect solidification, incrustation at the surface must

commence.

(ee.) It is probable that crust may thus form over wide extents

of surface, and may be temporarily buoyed up by the vesicular

character it may have retained from the ebullition of the liquid

in some places, or, at all events, it may be held up by the

viscidity of the liquid ;
until it has acquired some considerable

thickness sufficient to allow gravity to manifest its claim, and

sink the heavier solid below the lighter liquid. This process

must go on until the sunk portions of crust build up from the

bottom a sufficiently close ribbed solid skeleton or frame, to allow

fresh incrustations to remain bridging across the now small areas

of lava pools or lakes.

(ff.)
In the honey-combed solid and liquid mass thus formed,

there must be a continual tendency for the liquid, in consequence

of its less specific gravity, to work its way up ;
whether by masses

of solid falling from the roofs of vesicles or tunnels, and causing

earthquake shocks, or by the roof breaking quite through when

very thin, so as to cause two such hollows to unite, or the liquid of

* See his report on

tion Keport for 1847.

Earthquakes and Volcanic Action.&quot; British Associa-
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any of them to flow out freely over the outer surface of the earth:

or by gradual subsidence of the solid, owing to the thermo-

dynamic melting, which portions of it, under intense stress, must

experience, according to views recently published by Professor

James Thomson*. The results which must follow from this

tendency seem sufliciently great and various to account for all

that we see at present, and all that we learn from geological

investigation, of earthquakes, of upheavals, and subsidences of

isjolid, and of eruptions of melted rock.

(gg.) These conclusions, drawn solely from a consideration of

the necessary order of cooling and consolidation, according to

Bischof s result as to the relative specific gravities of solid and

of melted rock, are in perfect accordance with 832... 848,

regarding the present condition of the earth s interior, that it

is not, as commonly supposed, all liquid within a thin solid crust

of from 30 to 100 miles thick, but that it is on the whole more

rigid certainly than a continuous solid globe of glass of the same

diameter, and probably than one of steel.

(E.) ON THE AGE OF THE SUN S HEAT-T.

The second great law of Thermodynamics involves a certain

principle of irreversible action in nature. It is thus shown that,

although mechanical energy is indestructible, there is a universal

tendency to its dissipation, which produces gradual augmentation Dissipation

and diffusion of heat, cessation of motion, and exhaustion of
nergy*

potential energy through the material universe J. The result

would inevitably be a state of universal rest and death, if the

universe were finite and left to obey existing laws. But it is

impossible to conceive a limit to the extent of matter in the

universe; and therefore science points rather to an endless

progress, through an endless space, of action involving the trans-

*
Proceedings of the Eoyal Society of London, 1861, &quot;On Crystallization

and Liquefaction as influenced by Stresses tending to Change of Form in

Crystals.&quot;

t From Macmillarfs Magazine, March 1862.

J See Proceedings E.S.E. Feb. 1852, or Phil. Mag. 1853, first half year, &quot;On

a Universal Tendency in Nature to the Dissipation of Mechanical Energy.&quot;

Math, and Phys. Papers, by Sir W. Thomson, 1882, Art. LIX.
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formation of potential energy into palpable motion and thence

into heat, than to a single finite mechanism, running down like

a clock, and stopping for ever. It is also impossible to conceive

either the beginning or the continuance of life, without an

overruling creative power; and, therefore, no conclusions of

dynamical science regarding the future condition of the earth,

can be held to give dispiriting views as to the destiny of the

race of intelligent beings by which it is at present inhabited.

The object proposed in the present article is an application of

these general principles to the discovery of probable limits to

the periods of time, past and future, during which the sun can

be reckoned on as a source of heat and light. The subject will

be discussed under three heads :

I. The secular cooling of the sun.

II. The present temperature of the sun.

III. The origin and total amount of the sun s heat.

PART I.

Bate of

cooling of
sun un
known.

Heat gene
rated by fall

of meteors
into the sun

ON THE SECULAR COOLING OF THE SUN.

How much the sun is actually cooled from year to year, if at

all, we have no means of ascertaining, or scarcely even of estimat

ing in the roughest manner. In the first place we do not know

that he is losing heat at all. For it is quite certain that some

heat is generated in his atmosphere by the influx of meteoric

matter
;
and it is possible that the amount of heat so generated

from year to year is sufficient to compensate the loss by radia

tion. It is, however, also possible that the sun is now an incan

descent liquid mass, radiating away heat, either primitively

created in his substance, or, what seems far more probable,

generated by the falling in of meteors in past times, with no

sensible compensation by a continuance of meteoric action.

It has been shown* that, if the former supposition were true,

the meteors by which the sun s heat would have been produced

during the last 2,000 or 3,000 years must have been during all

* &quot; On the Mechanical Energies of the Solar System.&quot; Transactions of the

Royal Society of Edinburgh, 1854, and Phil. Mag. 1854, second half-year. Math.

and Phys. Papers, by Sir W. Thomson (Art. LXVI. of Vol. II. now in the press).
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that time much within the earth s distance from the sun, and

must therefore have approached the central body in very gradual

spirals ; because, if enough of matter to produce the supposed

thermal effect fell in from space outside the earth s orbit, the

length of the year would have been very sensibly shortened by

the additions to the sun s mass which must have been made.

The quantity of matter annually falling in must, on that insufficient

supposition, have amounted to ^ of the earth s mass, or to supply,

17,000.000 f t^ie sun s
&amp;gt;

anc* tneref re it would be necessary to

suppose the zodiacal light to amount to at least ^-^ of the

sun s mass, to account in the same way for a future supply of

3,000 years sun-heat. When these conclusions were first

published it was pointed out that &quot; disturbances in the motions

of visible planets&quot;
should be looked for, as affording us means

for estimating the possible amount of matter in the zodiacal

light ;
and it was conjectured that it could not be nearly enough

to give a supply of 300,000 years heat at the present rate.

These anticipations have been to some extent fulfilled in Le

Verrier s great researches on the motion of the planet Mercury,

which have recently given evidence of a sensible influence

attributable to matter circulating as a great number of small

planets within his orbit round the sun. But the amount of because the

matter thus indicated is very small ; and, therefore, if the zodiacal

lig-ht and
meteoric influx taking place at present is enough to produce intra-mer-

any appreciable portion of the heat radiated away, it must be planets is

supposed to be from matter circulating round the sun, within small.

very short distances of his surface. The density of this meteoric

cloud would have to be supposed so great that comets could

scarcely have escaped, as comets actually have escaped, showing
no discoverable effects of resistance, after passing his surface

within a distance equal to of his radius. All things con

sidered, there seems little probability in the hypothesis that

solar radiation is compensated, to any appreciable degree, by
heat generated by meteors falling in, at present ; and, as it can

be shown that no chemical theory is tenable*, it must be con- The sun an

eluded as most probable that the sun is at present merely an descent

,-,.-, i cooling
incandescent liquid mass cooling. mass.

How much he cools from year to year, becomes therefore a

* &quot; Mechanical Energies,&quot; &c. referred to above.
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question of very serious import, but it is one which we are at

present quite unable to answer. It is true we have data on

which we might plausibly found a probable estimate, and from

which we might deduce, with at first sight seemingly well

founded confidence, limits, not very wide, within which the

present true rate of the sun s cooling must lie. For we know,
from the independent but concordant investigations of Herschel

and Pouillet, that the sun radiates every year from his whole

surface about 6 x 1030

(six million million million million million)

times as much heat as is sufficient to raise the temperature of

1 Ib. of water by 1 Cent. We also have excellent reason for

believing that the sun s substance is very much like the earth s.

Stokes s principles of solar and stellar chemistry have been for

many years explained in the University of Glasgow, and it has

been taught as a first result that sodium does certainly exist in

the sun s atmosphere, and in the atmospheres of many of the

stars, but that it is not discoverable in others. The recent

application of these principles in the splendid researches of

Bunsen arid Kirchhof (who made an independent discovery of

Stokes s theory) has demonstrated with equal certainty that

there are iron and manganese, and several of our other known

metals, in the sun. The specific heat of each of these substances

is less than the specific heat of water, which indeed exceeds that

of every other known terrestrial body, solid or liquid. It might,

therefore, at first sight seem probable that the mean specific

heat* of the sun s whole substance is less, and very certain that

it cannot be much greater, than that of water. If it were equal

to the specific heat of water we should only have to divide the

preceding number (6 x 1030

),
derived from HerschePs and

Pouillet s observations, by the number of pounds (4-23 x 1030

)in

the sun s mass, to find 1*4 Cent, for the present annual rate of

* The &quot;specific heat&quot; of a homogeneous body is the quantity of heat that

a unit of its substance must acquire or must part with, to rise or to fall by 1 in

temperature. The mean specific heat of a heterogeneous mass, or of a mass of

homogeneous substance, under different pressures in different parts, is the

quantity of heat which the whole body takes or gives in rising or in falling

1 in temperature, divided by the number of units in its mass. The expression,

&quot;mean specific heat&quot; of the sun, in the text, signifies the total amount of heat

actually radiated away from the sun, divided by his mass, during any time in

which the average temperature of his mass sinks by 1, whatever physical or

chemical changes any part of his substance may experience.
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cooling. It might therefore seem probable that the sun cools

more, and almost certain that he does not cool less, than a centi

grade degree and four-tenths annually. But, if this estimate

were well founded, it would be equally just to assume that the

suii s expansibility* with heat does not differ greatly from that pansibility

of some avera.ge terrestrial body. If, for instance, it were the

same as that of solid glass, which is about 40 ooo of bulk,

or rannnr of diameter, per 1 Cent, (and for most terrestrial

liquids, especially at high temperatures, the expansibility is

much more), and if the specific heat were the same as that of rendered
A

. probable by

liquid water, there would be in 860 years a contraction of one absence of

per cent, on the sun s diameter, which could scarcely have contraction

escaped detection by astronomical observation. There is, how- diameter.

ever, a far stronger reason than this for believing that no such

amount of contraction can have taken place, and therefore for

suspecting that the physical circumstances of the sun s mass

render the condition of the substances of which it is composed,

as to expansibility and specific heat, very different from that of

the same substances when experimented on in our terrestrial

laboratories. Mutual gravitation between the different parts of

the sun s contracting mass must do an amount of work, which can

not be calculated with certainty, only because the law of the sun s

interior density is not known. The amount of work performed work done

during a contraction of one-tenth per cent, of the diameter, if turn of solar

the density remained uniform through the interior, would, as

Helmholtz showed, be equal to 20,000 times the mechanical

equivalent of the amount of heat which Pouillet estimated to
^QOO years.

be radiated from the sun in a year. But in reality the sun s

density must increase very much towards his centre, and pro

bably in varying proportions, as the temperature becomes lower

and the whole mass contracts. We cannot, therefore, say

whether the work actually done by mutual gravitation during a

contraction of one-tenth per cent, of the diameter, would be

* The &quot;

expansibility in volume,&quot; or the &quot;cubical expansibility,&quot; of a body,

is an expression technically used to denote the proportion which the increase or

diminution of its bulk, accompanying a rise or fall of 1 in its temperature,

bears to its whole bulk at some stated temperature. The expression,
&quot; the sun s

expansibility,&quot; used in the text, may be taken as signifying the ratio which the

actual contraction, during a lowering of his mean temperature by 1 Cent.,

bears to his present volume.
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more or less than the equivalent of 20,000 years heat ; but we

may regard it as most probably not many times more or less

than this amount. Now, it is in the highest degree improbable
that mechanical energy can in any case increase in a body con

tracting in virtu3 of cooling. It is certain that it really does

diminish very notably in every case hitherto experimented on.

It must be supposed, therefore, that the sun always radiates

away in heat something more than the Joule-equivalent of the

work done on his contracting mass, by mutual gravitation of its

parts. Hence, in contracting by one-tenth per cent, in his

diameter, or three-tenths per cent, in his bulk, the sun must

give out something either more, or not greatly less, than 20,000

years heat
;
and thus, even without historical evidence as to the

constancy of his diameter, it seems safe to conclude that no such

contraction as that calculated above one per cent, in 860 years

can have taken place in reality. It seems, on the contrary,

probable that, at the present rate of radiation, a contraction of

one-tenth per cent, in the sun s diameter could not take place in

much less than 20,000 years, and scarcely possible that it could

take place in less than 8,600 years. If, then, the mean specific

heat of the sun s mass, in its actual condition, is not more than

ten times that of water, the expansibility in volume must be

less than T^^- per 100 Cent., (that is to say, less than ^ of

that of solid glass,) which seems improbable. But although

from this consideration we are led to regard it as probable that

the sun s specific heat is considerably more than ten times that

of water (and, therefore, that his mass cools considerably less

than 100 in 700 years, a conclusion which, indeed, we could

scarcely avoid on simply geological grounds), the physical prin

ciples we now rest on fail to give us any reason for supposing

that the sun s specific heat is more than 10,QOO times that of

water, because we cannot say that his expansibility in volume is

probably more than ^^ per 1 Cent. And there is, on other

grounds, very strong reason for believing that the specific heat

is really much less than 10,000. For it is almost certain that

the sun s mean temperature* is even now as high as 14,000

*
[Eosetti (Phil. Mag. 1879, 2nd half year) estimates the effective radiational

temperature of the sun as &quot;not much less than ten thousand degrees Centigrade:
&quot;

(9965 is the number expressing the results of his measurements). On the other

hand, C. W. Siemens estimates it at as low as 3000 Cent. The mean tern-
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Cent.
;
and the greatest quantity of heat that we can explain,

with any probability, to have been by natural causes ever

acquired by the sun (as we shall see in the third part of this

article), could not have raised his mass at any time to this tem

perature, unless his specific heat were less than 10,000 times

that of water.

We may therefore consider it as rendered highly probable
that the sun s specific heat is more than ten times, and less than

and fall of

10,000 times, that of liquid water. From this it would follow
[J^JJJ

with certainty that his temperature sinks 100 Cent, in some Cent - in

from TOO to

time from 700 years to 700,000 years. 700,000

years.

PART II.

ON THE SUN S PRESENT TEMPERATURE.

At his surface the sun s temperature cannot, as we have

many reasons for believing, be incomparably higher than tem

peratures attainable artificially in our terrestrial laboratories.

Among other reasons it may be mentioned that the sun sun s

radiates heat, from every square foot of his surface, at only tempera^
1

about 7,000 horse power*. Coal, burning at a rate of a little pambie
less than a pound per two seconds, would generate the same Jay be

hat

amount ;
and it is estimated (Rankine, Prime Movers, p. 285,

Ed. 1859) that, in the furnaces of locomotive engines, coal burns

at from one pound in thirty seconds to one pound in ninety

seconds, per square foot of grate-bars. Hence heat is radiated

from the sun at a rate not more than from fifteen to forty-five

times as high as that at which heat is generated on the grate-

bars of a locomotive furnace, per equal areas.

perature of the whole sun s mass must (Part n. below) be much higher than the
&quot; surface temperature,&quot; or &quot; effective radiational temperature.&quot; W. T. Nov. 9,

1882.]
* One horse power in mechanics is a technical expression (following Watt s

estimate), used to denote a rate of working in which energy is evolved at the

rate of 33,000 foot pounds per minute. This, according to Joule s determination

of the dynamical value of heat, would, if spent wholly in heat, be sufficient to

raise the temperature of 23 Ibs. of water by 1 Cent, per minute.

[Note of Nov. 11, 1882. This is sixty-seven times the rate per unit of

radiant surface at which energy is emitted from the incandescent filament of

the Swan electric lamp when at the temperature which gives about 240 candles

per horse power.]
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The interior temperature of the sun is probably far higher than

that at his surface, because direct conduction can play no sensi

ble part in the transference of heat between the inner and outer

portions of his mass, and there must in virtue of the prodigious
convective currents due to cooling of the outermost portions by
radiation into space, be an approximate convective equilibrium
of heat throughout the whole, if the whole is fluid. That is to

say, the temperatures, at different distances from the centre,

must be approximately those which any portion of the substance,

if carried from the centre to the surface, would acquire by ex

pansion without loss or gain of heat.

Solar heat
must arise
from con
version of

kinetic and
potential
energy.

PART III.

ON THE ORIGIN AND TOTAL AMOUNT OF THE SUN S HEAT.

The sun being, for reasons referred to above, assumed to be

an incandescent liquid now losing heat, the question naturally

occurs, How did this heat originate 1 It is certain that it can

not have existed in the sun through an infinity of past time,

since, as long as it has so existed, it must have been suffering

dissipation, and the finiteness of the sun precludes the supposi

tion of an infinite primitive store of heat in his body.

The sun must, therefore, either have been created an active

source of heat at some time of not immeasurable antiquity, by an

over-ruling decree
;
or the heat which he has already radiated

away, and that which he still possesses, must have been acquired

by a natural process, following permanently established laws.

Without pronouncing the former supposition to be essentially

incredible, we may safely say that it is in the highest degree

improbable, if we can show the latter to be not contradictory to

known physical laws. And we do show this and more, by

merely pointing to certain actions, going on before us at present,

which, if sufficiently abundant at some past time, must have

given the sun heat enough to account for all we know of his

past radiation and present temperature.

It is not necessary at present to enter at length on details

regarding the meteoric theory, which appears to have been first

proposed in a definite form by Mayer, and afterwards indepen-
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dently by Waterston; or regarding the modified hypothesis of

meteoric vortices, which the writer of the present article showed

to be necessary, in order that the length of the year, as known

for the last 2,000 years, may not have been sensibly disturbed

by the accessions which the sun s mass must have had during

that period, if the heat radiated away has been always compen
sated by heat generated by meteoric influx.

For the reasons mentioned in the first part of the present

article, we may now believe that all theories of complete, or

nearly complete, contemporaneous meteoric compensation, must

be rejected ;
but we may still hold that

&quot; Meteoric action .... is .... not only proved to exist as a

cause of solar heat, but it is the only one of all conceivable causes

which we know to existfrom independent evidence* &quot;

The form of meteoric theory which now seems most proba

ble, and which was first discussed on true thermodynamic prin

ciples by Helmholtzf, consists in supposing the sun and his heat

to have originated in a coalition of smaller bodies, falling to

gether by mutual gravitation, and generating, as they must do

according to the great law demonstrated by Joule, an exact

equivalent of heat for the motion lost in collision.

That some form of the meteoric theory is certainly the true

and complete explanation of solar heat can scarcely be doubted,

when the following reasons are considered :

(1) No other natural explanation, except by chemical action, Chemical
x action in-

can be conceived. sufficient,
but meteo-

(2) The chemical theory is quite insufficient, because the may easily

most energetic chemical action we know, taking place between
fp?20 mif-*

substances amounting to the whole sun s mass, would only gene-
hon yeara-

rate about 3,000 years heat J.

(3)
There is no difficulty in accounting for 20,000,000 years

heat by the meteoric theory.

*
&quot;Mechanical Energies of the Solar System,&quot; referred to above,

f Popular lecture delivered on the 7th February, 1854, at Konigsberg, on the

occasion of the Kant commemoration.

J
&quot; Mechanical Energies of the Solar System.&quot;
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It would extend this article to too great a length, and would

require something of mathematical calculation, to explain fully

the principles on which this last estimate is founded. It is

enough to say that bodies, all much smaller than the sun, fall

ing together from a state of relative rest, at mutual distances all

large in comparison with their diameters, and forming a globe

of uniform density equal in mass and diameter to the sun, would

generate an amount of heat which, accurately calculated accord

ing to Joule s principles and experimental results, is found to be

just 20,000,000 times Pouillet s estimate of the annual amount

of solar radiation. The sun s density must, in all probability,

increase very much towards his centre, and therefore a consider

ably greater amount of heat than that must be supposed to have

been generated if his whole mass was formed by the coalition of

comparatively small bodies. On the other hand, we do not

know how much heat may have been dissipated by resistance

and minor impacts before the final conglomeration ;
but there is

reason to believe that even the most rapid conglomeration that

we can conceive to have probably taken place could only leave

the finished globe with about half the entire heat due to the

amount of potential energy of mutual gnivitation exhausted.

We may, therefore, accept, as a lowest estimate for the sun s

initial heat, 10,000,000 times a year s supply at present rate,

but 50,000,000 or 100,000,000 as possible, in consequence of

the sun s greater density in his central parts.

The considerations adduced above, in this paper, regarding

the sun s possible specific heat, rate of cooling, and superficial

temperature, render it probable that he must have been very

sensibly warmer one million years ago than now
; and, conse

quently, that if he has existed as a luminary for ten or twenty

million years, he must have radiated away considerably more

than ten or twenty million times the present yearly amount

of loss.

It seems, therefore, on the whole most probable that the sun

has not illuminated the earth for 100,000,000 years, and almost

certain that he has not done so for 500,000,000 years. As for

the future, we may say, with equal certainty, that inhabitants

of the earth cannot continue to enjoy the light and heat essential

to their life, for many million years longer, unless sources now

unknown to us are prepared in the great storehouse of creation.
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(F.) ON THE SIZE OF ATOMS*.

The idea of an atom has been so constantly associated

with incredible assumptions of infinite strength, absolute

rigidity, mystical actions at a distance, and indivisibility, that

chemists and many other reasonable naturalists of modern

times, losing all patience with it, have dismissed it to the realms

of metaphysics, and made it smaller than &quot;anything we can

conceive.&quot; But if atoms are inconceivably small, why are not

all chemical actions infinitely swift 1 Chemistry is powerless to

deal with this question, and many others of paramount import

ance, if barred by the hardness of its fundamental assumptions,

from contemplating the atom as a real portion of matter occupy

ing a finite space, and forming a not immeasurably small consti

tuent of any palpable body.

More than thirty years ago naturalists were scared by a wild

proposition of Cauchy s, that the familiar prismatic colours

proved the &quot;sphere
of sensible molecular action&quot; in transparent

liquids and solids to be comparable with the wave-length of Meaning of

light. The thirty years which have intervened have only con- molecular

firmed that proposition. They have produced a large number of

capable judges ;
and it is only incapacity to judge in dynamical

questions that can admit a doubt of the substantial correctness

of Cauchy s conclusion. But the &quot;

sphere of molecular action&quot;

conveys no very clear idea to the non-mathematical mind. The

idea which it conveys to the mathematical mind is, in my opinion,

irredeemably false. For I have no faith whatever in attractions

and repulsions acting at a distance between centres of force

according to various laws. What Cauchy s mathematics really

proves is this : that in palpably homogeneous bodies such as Meaning of

glass or water, contiguous portions are not similar when their gSy.
dimensions are moderately small fractions of the wave-length.

Thus in water contiguous cubes, each of one one-thousandth of

a centimetre breadth are sensibly similar. But contiguous cubes

of one ten-millionth of a centimetre must be very sensibly

different. So in a solid mass of brickwork, two adjacent lengths

of 20,000 centimetres each, may contain, one of them nine

hundred and ninety-nine bricks and two half bricks, and the

*
Nature, March 1870.
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other one thousand bricks : thus two contiguous cubes of 20,000

centimetres breadth may be considered as sensibly similar.

But two adjacent lengths of forty centimetres each might

contain one of them, one brick, and two half bricks, and

the other two whole bricks
;
and contiguous cubes of forty

centimetres would be very sensibly dissimilar. In short, optical

dynamics leaves no alternative but to admit that the diameter

of a molecule, or the distance from the centre of a molecule to

the centre of a contiguous molecule in glass, water, or any other

of our transparent liquids and solids, exceeds a ten-thousandth

of the wave-length, or a two-hundred-millionth of a centimetre.

By experiments on the contact electricity of metals made in

the year 1862, and described in a letter to Dr Joule*, which was

published in the proceedings of the Literary and Philosophical

Society of Manchester [Jan. 1862], I found that plates of zinc

and copper connected with one another by a fine wire attract

one another, as would similar pieces of one metal connected with

the two plates of a galvanic element, having about three-quarters

of the electro-motive force of a Daniel s element.

Measurements published in the Proceedings of the Royal

Society for 1860 showed that the attraction between parallel

plates of one metal held at a distance apart small in comparison

with their diameters, and kept connected with such a galvanic

element, would experience an attraction amounting to two ten-

thousand-millionths of a gramme weight per area of the opposed

surfaces equal to the square of the distance between them. Let

a plate of zinc and a plate of copper, each a centimetre square

and a hundred-thousandth of a centimetre thick, be placed with

a corner of each touching a metal globe of a hundred-thousandth

of a centimetre diameter. Let the plates, kept thus in metallic

communication with one another be at first wide apart, except

at the corners touching the little globe, and let them then be

gradually turned round till they are parallel and at a distance of

a hundred-thousandth of a centimetre asunder. In this position

they will attract one another with a force equal in all to two

grammes weight. By abstract dynamics and the theory of

energy, it is readily proved that the work done by the changing

force of attraction during the motion by which we have supposed

*
[Now published as Art. xxn. in a &quot;

Eeprint of Papers on Electrostatics and

Magnetism
&quot;

by Sir William Thomson. New edition, 1883.]
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this position to be reached, is equal to that of a constant force of

two grammes weight acting through a space of a hundred-

thousandth of a centimetre; that is to say, to two hundred-

thousandths of a centimetre-gramme. Now let a second plate

of zinc be brought by a similar process to the other side of the

plate of copper; a second plate of copper to the remote side of

this second plate of zinc, and so on till a pile is formed consisting Work done

of 50,001 plates of zinc and 50,000 plates of copper, separated pile of zinc

by 100,000 spaces, each plate and each space one hundred- plates,

thousandth of a centimetre thick. The whole work done by
electric attraction in the formation of this pile is two centimetre-

grammes.

The whole mass of metal is eight grammes. Hence the

amount of work is a quarter of a centimetre-gramme per gramme
of metal. Now 4,030 centimetre-grammes of work, according

to Joule s dynamical equivalent of heat, is the amount required

to warm a gramme of zinc or copper by one degree Centigrade.

Hence the work done by the electric attraction could warm the

substance by only T^Y2o~ f a degree. But now let the thickness of

each piece of metal and of each intervening space be a hundred- The heat of

millionth of a centimetre instead of a hundred thousandth. The S^Tzinc
work would be increased a million-fold unless a hundred-millionth thows that

of a centimetre approaches the smallness of a molecule. The

heat equivalent would therefore be enough to raise the tempera- iJj-

ture of the material by 62. This is barely, if at all, admissible,

according to our present knowledge, or, rather, want of know- more than

ledge, regarding the heat of combination of zinc and copper,
m diameter.

But suppose the metal plates and intervening spaces to be made

yet four times thinner, that is to say, the thickness of each to

be a four Imndred-millionth of a centimetre. The work and its

heat equivalent will be increased sixteen-fold. It would there

fore be 990 times as much as that required to warm the mass

by 1 cent., which is very much more than can possibly be pro

duced by zinc and copper in entering into molecular combination.

Were there in reality anything like so much heat of combination

as this, a mixture of zinc and copper powders would, if melted

in any one spot, run together, generating more than heat

enough to melt each throughout , just as a large quantity of

gunpowder if ignited in any one spot burns throughout without

fresh application of heat. Hence plates of zinc and copper of a

VOL. II. 32



498 APPENDIX F. [F.

Work don^
in stretch

ing fluid

film against
surface
tension.

Intrinsic

energy of
a mass of

water esti

mated from
the heat

required to

prevent film
from cool

ing as it

extends.

three hundred-millionth of a centimetre thick, placed close

together alternately, form a near approximation to a chemical

combination, if indeed such thin plates could be made without

splitting atoms.

The theory of capillary attraction shows that when a bubble

a soap-bubble for instance is blown larger and larger, work is

done by the stretching of a film which resists extension as if it

were an elastic membrane with a constant contractile force.

This contractile force is to be reckoned as a certain number of

units of force per unit of breadth. Observation of the ascent of

water in capillary tubes shows that the contractile force of a

thin film of water is about sixteen milligrammes weight per

millimetre of breadth. Hence the work done in stretching a

water film to any degree of thinness, reckoned in millimetre-

milligrammes, is equal to sixteen times the number of square

millimetres by which the area is augmented, provided the film

is not made so thin that there is any sensible diminution of its

contractile force. In an article &quot; On the Thermal effect of draw

ing out a Film of Liquid,&quot; published in the Proceedings of the

Royal Society for April 1858, I have proved from the second

law of thermodynamics that about half as much more energy, in

the shape of heat, must be given to the film to prevent it from

sinking in temperature while it is being drawn out. Hence the

intrinsic energy of a mass of water in the shape of a film kept
at constant temperature increases by twenty-four milligramme-

millimetres for every square millimetre added to its area.

Suppose then a film to be given with a thickness of a milli

metre, and suppose its area to be augmented ten thousand

and one fold : the work done per square millimetre of the

original film, that is to say per milligramYne of the mass

would be 240,000 millimetre-milligrammes. The heat equivalent

of this is more than half a degree centigrade of elevation of

temperature of the substance. The thickness to which the film

is reduced on this supposition is very approximately a ten-

thousandth of millimetre. The commonest observation on the

soap-bubble (which in contractile force differs no doubt very

little from pure water) shows that there is no sensible diminu

tion of contractile force by reduction of the thickness to the ten-

thousandth of a millimetre; inasmuch as the thickness which
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gives the first maximum brightness round the black spot seen

where the bubble is thinnest, is only about an eight-thousandth

of a millimetre.

The very moderate amount of work shown in the preceding
estimates is quite consistent with this deduction. But suppose
now the film to be farther stretched until its thickness is reduced

to a twenty-millionth of a millimetre. The work spent in doing
this is two-thousand times more than that which we have just

calculated. The heat equivalent is 1,130 times the quantity

required to raise the temperature of the liquid by one degree

centigrade. This is far more than we can admit as a possible

amount of work done in the extension of a liquid film. A
smaller amount of work spent on the liquid would convert it

into vapour at ordinary atmospheric pressure. The conclusion

is unavoidable, that a water-film falls off greatly in its contrac- Surface

tile force before it is reduced to a thickness of a twenty-millionth much before

of i\ millimetre. It is scarcely possible, upon any conceivable reduced to

molecular theory, that there can be any considerable falling off and there

in the contractile force as long as there are several molecules in few
P
mole-

the thickness. It is therefore probable that there are not several thickness.
8

molecules in a thickness of a twenty-millionth of a millimetre

of water.

The kinetic theory of gases suggested a hundred years ago Kinetic

by Daniel Bernoulli has, during the last quarter of a century, gases.

been worked out by Herapath, Joule, Clausius, and Maxwell, to

so great perfection that we now find in it satisfactory explana

tions of all non-chemical properties of gases. However difficult Meaning of

it may be to even imagine what kind of thing the molecule is, free path

we may regard it as an established truth of science that a gas sion.

consists of moving molecules disturbed from rectilinear paths

and constant velocities by collisions or mutual influences, so

rare that the mean length of nearly rectilinear portions of

the path of each molecule is many times greater than the

average distance from the centre of each molecule to the centre

of the molecule nearest it at any time. If, for a moment, we

suppose the molecules to be hard elastic globes all of one size,

influencing one another only through actual contact, we have

for each molecule simply a zigzag path composed of rectilinear Average

portions, with abrupt changes of direction. On this supposition free path

Clausius proves, by a simple application of the calculus of pro- by Clausius.

32 2
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babilities, that the average length of the free path of a particle

from collision to collision bears to the diameter of each globe,

the ratio of the whole space in which the globes move, to eight

times the sum of the volumes of the globes. It follows that

the number of the globes in unit volume is equal to the square

of this ratio divided by the volume of a sphere whose radius

is equal to that average length of free path. But we cannot

believe that the individual molecules of gases in general, or even

of any one gas, are hard elastic globes. Any two of the moving

particles or molecules must act upon one another somehow, so

that when they pass very near one another they shall produce

considerable deflexion of the path and change in the velocity of

each. This mutual action (called force) is different at different

distances, and must vary, according to variations of the distance

so as to fulfil some definite law. If the particles were hard

elastic globes acting upon one another only by contact, the law

of force would be zero force wlien the distance from centre to

centre exceeds the sum of the radii, and infinite repulsion for

any distance less than the sum of the radii. This hypothesis,

with its
&quot; hard and fast&quot; demarcation between no force and in

finite force, seems to require mitigation. Without entering on

the theory of vortex atoms at present, I may at least say that

soft elastic solids, not necessarily globular, are more promising

than infinitely hard elastic globes. And, happily, we are not

left merely to our fancy as to what we are to accept as probable

in respect to the law of force. If the particles were hard elastic

globes the average time from collision to collision would be in

versely as the average velocity of the particles. But Maxwell s

experiments on the variation of the viscosities of gases with

change of temperature prove that the mean time from collision

to collision is independent of the velocity if we give the name

collision to those mutual actions only which produce something

more than a certain specified degree of deflection of the line of

motion. This law could be fulfilled by soft elastic particles

(globular or not globular); but, as we have seen, not by hard

elastic globes. Such details, however, are beyond the scope of

our present argument. What we want now are rough approxi

mations to absolute values, whether of time or space or mass

not delicate differential results. From Joule, Maxwell, and

Clausius we know that the average velocity of the molecules of
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oxygen or nitrogen or common air, afc ordinary atmospheric Kinetic

temperature and pressure, is about 50,000 centimetres per gases.

second, and the average time from collision to collision a five-

thousand-millionth of a second. Hence the average length

path of each molecule between collisions is about
1 ^ of a

centimetre. Now, having left the idea of hard globes, according
to which the dimensions of a molecule and the distinction

between collision and no collision are perfectly sharp, some

thing of circumlocution must take the place of these simple
terms.

First, it is to be remarked that two molecules in collision will Meaning of

collision

exercise a mutual repulsion in virtue of which the distance and dia-

between their centres, after being diminished to a minimum, molecule,

will begin to increase as the molecules leave one another. This

minimum distance would be equal to the sum of the radii, if the

molecules were infinitely hard elastic spheres ;
but in reality we

must suppose it to be very different in different collisions.

Considering only the case of equal molecules, we might, then,

define the radius of a molecule as half the average shortest

distance reached in a vast number of collisions. The definition

I adopt for the present is not precisely this, but is chosen so as

to make as simple as possible the statement I have to make of a

combination of the results of Clatisius and Maxwell. Having
defined the radius of a gaseous molecule, I call the double of

the radius the diameter
;
and the volume of a globe of the same

radius or diameter I call the volume of the molecule.

The experiments of Cagniard de la Tour, Faraday, Regnault,

and Andrews, on the condensation of gases do not allow us to

believe that any of the ordinary gases could be made forty thou

sand times denser than at ordinary atmosphere pressure and

temperature, without reducing the whole volume to something
less than the sum of the volume of the gaseous molecules, as now
defined. Hence, according to the grand theorem of Clausius Free path

quoted above, the average length of path from collision to more than

collision cannot be more than five thousand times the diameter diameter of

of the gaseous molecule
;
and the number of molecules in unit

of volume cannot exceed 25,000,000 divided by the volume of a

globe whose radius is that average length of path. Taking now

the preceding estimate, T00
1
000 of a centimetre, for the average

length of path from collision to collision we conclude that the
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diameter of the gaseous molecule cannot be less than 600 O o 0t00^
of a centimetre

;
nor the number of molecules in a cubic centi

metre of the gas (at ordinary density) greater than 6 x 1021

(or

six thousand million million million).

The densities of known liquids and solids are from five

hundred to sixteen thousand times that of atmospheric air

at ordinary pressure and temperature ; and, therefore, the

number of molecules in a cubic centimetre may be from 3 x 1024

to 1
26

(that is, from three million million million million to a

hundred million million million million). From this
(if we

assume for a moment a cubic arrangement of molecules), the

distance from centre to nearest centre in solids and liquids may
be estimated at from iTd7oo~6Too^ to 46o.ooo.ooo f a centi

metre.

The four lines of argument which I have now indicated,

lead all to substantially the same estimate of the dimensions of

molecular structure. Jointly they establish with what we can

not but regard as a very high degree of probability the conclu

sion that, in any ordinary liquid, transparent solid, or seemingly

opaque solid, the mean distance between the centres of contigu

ous molecules is less than the hundred-millionth, and greater

than the two thousand-millionth of a centimetre*.

To form some conception of the degree of coarse-grainedness

indicated by this conclusion, imagine a rain drop, or a globe of

glass as large as a pea, to be magnified up to the size of the

earth, each constituent molecule being magnified in the same

proportion. The magnified structure would be more coarse

grained than a heap of small shot, but probably less coarse

grained than a heap of cricket-balls.

* I find that M. Loschmidt had preceded me in the fourth of the preceding

methods of estimating the size of atoms [Sitzungsberichte of the Vienna Acad.,

12 Oct., 1865, p. 395]. He finds the diameter of a molecule of common air to

be about a ten-millionth of a centimetre. M. Lippmann has also given a

remarkably interesting and original investigation relating to the size of atoms

Comptes Rendus, Oct. 16th, 1882, basing his argument on the variations of

capillarity under electrification. He finds that the thickness of the double

electric layer, according to Helmholtz s theory, is about a 35-millionth of a

centimetre. W. T., Dec. 13, 1882.
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(G.) ON TIDAL FRICTION, by G. H. DARWIN, F.R.S.

(a.) The retardation of the earth s rotation, as deduced from
the secular acceleration of the Moons mean motion.

In my paper on the precession of a viscous spheroid [Phil. Retardation

Trans. Pt. II., 1879, or Scientific Papers, Vol. n, p. 36], all rotation .

8

the data are given which are requisite for making the calcu- estimates,

lations for Professor Adams result in 830, viz. : that if

there is an unexplained part in the coefficient of the secular

acceleration of the moon s mean motion amounting to
6&quot;,

and

if this be due to tidal friction, then in a century the earth gets

22 seconds behind time, when compared with an ideal clock,

going perfectly for a century, and perfectly rated at the

beginning of the century. In the paper referred to however

the earth is treated as homogeneous, and the tides are supposed

to consist in a bodily deformation of the mass. The numerical

results there given require some modification on this account.

If E, Ft
,

E&quot; be the heights of the semidiurnal, diurnal and

fortnightly tides, expressed as fractions of the equilibrium tides

of the same denominations; and if e, ,
e&quot; be the corresponding

retardations of phfise of these tides due to friction
;

it is shown

on p. 476 [Scientific Papers, Vol. n. p. 68] and in equation (48),

that in consequence of lunar and solar tides, at the end of a

century, the earth, as a time-keeper, is behind the time indicated

by the ideal perfect clock.

1900-27 ^sin 2e + 423-49 E sine seconds of time (a),

and that if the motion of the moon were unaffected by the

tides, an observer, taking the earth as his clock, would note that

at the end of the century the moon was in advance of her place

in her orbit by

1043&quot;-28 E sin 2e + 232&quot;-50^ sin c (b).

This is of course merely the expression of the same fact as (a), in

a different form.

Lastly it is shown in equation (60) that from these causes in a

century, the moon actually lags behind her place

630&quot; -7 E sin 2e + 10S&quot; 6 E sin e -
7&quot; 042 E&quot; sin 2e&quot; (c).

In adapting these results to the hypothesis of oceanic tides on a

heterogeneous earth, we observe in the first place that, if the
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tides are inverted, that is to say if for example it is low
rotation. water under the moon, then friction advances the fluid tides*,

and therefore in that case the c s are to be interpreted as

advancements of phase; and secondly that the JS s are to be

multiplied by ^-, which is the ratio of the density of water

to the mean density of the earth. Next the earth s moment of

inertia (as we learn from col. vii. of the table in 824) is about

83 of its amount on the hypothesis of homogeneity, and there

fore the results (a) and (6) have both to be multiplied by 1/-83

or 1 2
;
the result (c) remains unaffected except as to the factor ^.

Thus subtracting (c) from (b) as amended, we find that to an

observer, taking the earth as a true time-keeper, the moon is, at

the end of the century, in advance of her place by

^-{(1-2 x 1043&quot;-28-630&quot;-7)^sin 2e

+ (1-2 x 232&quot;-50 - 108&quot; -6) E sin + 7&quot; 042 E&quot; sin 2
&quot;},

which is equal to

T
2
T {621

//

-24 ^sin 2e + 17CT40 E sin e + 7&quot;-04 E&quot; sin
2e&quot;}...(d)

and from (a) as amended that the earth, as a time-keeper, is

behind the time indicated by the ideal clock, perfectly rated at

the beginning of the century, by

^ {2280-32 E sin 2e + 508-1 9 E sine
}
seconds of time .........

(e).

Now if we suppose that the tides have their equilibrium height,

so that the E*& are each unity ;
and that e is one half of e (which

must roughly correspond to the state of the case), and that e&quot; is

insensible, and small, (d) becomes

T
4
T {621&quot;-24

+ Jx 170&quot; -40} ................................... (/)

arid (e) becomes

T
4
T {2280-32 + Jx 508-19} e seconds of time ............... (g).

If (/) were equal to
1&quot;,

then (g) would clearly
;

te

The second term, both in the numerator and denominator of (h),

depends on the diurnal tide, which only exists when the ecliptic

* That this is true may be seen from considerations of energy. If it were

approximately low water under the moon, the earth s rotation would be acce

lerated by tidal friction, if the tides of short period lagged; and this would

violate the principles of energy.
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is oblique. Now Adams result was obtained on the hypothesis Adams
that the obliquity of the ecliptic was nil, therefore according to

result*

his assumption, 1&quot; in the coefficient of lunar acceleration means
that the earth, as compared with a perfect clock rated at the

beginning of the-century, is behind time

2280*32

621-24
= ^ secon^s at the end f a century.

Accordingly 6&quot; in the coefficient gives 22 sees, at the end of a

century, which is his result given in 830. If however we
include the obliquity of the ecliptic and the diurnal tide, we
find that V in the coefficient means that the earth, as compared
with the perfect clock, is behind time

2407*37
--_ = 3*6274 seconds at the end of a century.
ODO bU

Thus taking Hansen s 12&quot;*56 with Delaunay s
6&quot;*1,

we have the other

earth behind 6*46 x 3*6274 = 23 4 sec., and taking Newcomb s
results

8&quot;*4 with Delaunay s 6&quot; l, we have the earth behind 2*3 x 3*6274

= 8*3 sec.

It is worthy of notice that this result would be only very

slightly vitiated by the incorrectness of the hypothesis made

above as to the values of the W& and e s
;
for E sin 2c occurs

in the important term both in the numerator and denominator

of the result for the earth s defect as a time-keeper, and thus

the hypothesis only enters in determining the part played by
the diurnal tide. Hence the result is not sensibly affected by
some inexactness in this hypothesis, nor by the fact that the

oceans in reality only cover a portion of the earth s surface.

The Determination of the Secular Effects of Tidal Fric

tion by a Graphical Method. (Portion of a paper published

in the Proc. Roy. Soc. No. 197, 1879 [or Scientific Papers,

Vol. II. p. 195], but with alterations and additions.)

Suppose an attractive particle or satellite of mass m to be General
problem of

moving in a circular orbit, with an angular velocity O, round a tidal

planet of mass M, and suppose the planet to be rotating about an

axis perpendicular to the plane of the orbit, with an angular

velocity n ; suppose, also, the mass of the planet to be partially

or wholly imperfectly elastic or viscous, or that there are oceans
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on the surface of the planet ;
then the attraction of the satellite

must produce a relative motion in the parts of the planet, and

that motion must be subject to friction, or, in other words, there

must be frictional tides of some sort or other. The system must

accordingly be losing energy by friction, and its configuration

must change in such a way that its whole energy diminishes.

Such a system does not differ much from those of actual

planets and satellites, and, therefore, the results deduced in this

hypothetical case must agree pretty closely with the actual course

of evolution, provided that time enough has been and will be

given for such changes.

Let C be the moment of inertia of the planet about its axis of

rotation
;

r the distance of the satellite from the centre of the planet;

h the resultant moment of momentum of the whole system ;

e the whole energy, both kinetic and potential of the system.

It will be supposed that the figure of the planet and the dis

tribution of its internal density are such that the attraction of

the satellite causes no couple about any axis perpendicular to

that of rotation.

Special I shall now adopt a special system of units of mass, length,

and time such that the analytical results are reduced to their

simplest forms.

Let the unit of mass be Mm/(M+m).

Let the unit of length y be such a distance, that the moment

of inertia of the planet about its axis of rotation may be equal to

the moment of inertia of the planet and satellite, treated as par

ticles, about their centre of inertia, when distant y apart from

one another. This condition gives

2

f
-

i,M ...
r + m

fJ+m)lwhence y = J ^--t .

\ Mm )

Let the unit of time T be the time in which the satellite revolves

through 57 -3 about the planet, when the satellite s radius vector

is equal to y. In this case I/T is the satellite s orbital angular
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velocity, and by the law of periodic times we have

T
~ 2

y
3 =

//, (
M + m)

where /* is the attraction between unit masses at unit distance.

Then by substitution for y

~\ v?(Mm

This system of units will be found to make the three following

functions each equal to unity, viz. fjC~Mm (M+ m)~%, pMrn, and C.

The units are in fact derived from the consideration that these

functions are each to be unity.

In the case of the earth and moon, if we take the moon s mass Numerical

as -g^-nd of the earth s, and the earth s moment of inertia as

Ma* [see 824], it may easily be shown that the unit of mass

is
-gJg-

of the earth s mass, the unit of length is 5 26 earth s radii

or 33,506 kilometres, and the unit of time is 2 hrs. 41 minutes.

In these units the present angular velocity of the earth s

diurnal rotation is expressed by 7044, and the moon s present

radius vector by 11-454.

The two bodies being supposed to revolve in circles about Moment of

their common centre of inertia with an angular velocity O, the STe^rgy
moment of momentum of orbital motion is

of system.

,,/ mr \
2

/ Mr \ 2 MmM ^ )
O + m ( -j-p

-
)
O = -r7

-- r
2
O.

\M + m/ \M + m/ M + m
Then, by the law of periodic times, in a circular oibifc,

whence Qr2 =^ (M + m)
2 r.

And the moment of momentum of orbital motion

=
fj$ Mm (M+ m)-^ r$,

and in the special units this is equal to r-.

The moment of momentum of the planet s rotation is Cn, and

C = 1, in the special units.

Therefore h=n + r* ....................... ....(1).

Again, the kinetic energy of orbital motion is
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Moment of

momentum
and energy
of system.

Two con
figurations
ofmaxi
mum and
minimum
energy
for given
momentum,
determined
by quartic
equation.

The kinetic energy of the planet s rotation is ^Cn*.

The potential energy of the system is pMrn/r.

Adding the three energies together, and transforming into the

special units, we have

2e = n* - -
r

.(2).

Since the moon s present radius vector is 11 454, it follows

that the orbital momentum of the moon is 3*384. Adding to

this the rotational momentum of the earth which is 704, we

obtain 4-088 for the total moment of momentum of the moon

and earth. The ratio of the orbital to the rotational momentum

is 4 80, so that the total moment of momentum of the system

would, but for the obliquity of the ecliptic, be 5 80 times that

of the earth s rotation. In 276, where the obliquity is taken

into consideration, the number is given as 5*38.

Now let x = r*, y = n, Y= 2e.

It will be noticed that x, the moment of momentum of orbital

motion, is equal to the square root of the satellite s distance from

the planet.

Then the equations (1) and (2) become

h= y + x (3).

.(4).

(3) is the equation of conservation of moment of momentum, or

shortly, the equation of momentum ; (4) is the equation of energy.

Now, consider a system started with given positive (or say

clockwise*) moment of momentum h
;
we have all sorts of ways

in which it may be started. If the two rotations be of opposite

kinds, it is clear that we may start the system with any amount

of energy however great, but the true maxima and minima of

energy compatible with the given moment of momentum are

given by dY/dx = 0,

or

that is to say,
-ha? .(5).

* This is contrary to the ordinary convention, but I leave this passage as it

etood originally.
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We shall presently see that this quartic has either two real

roots and two imaginary, or all imaginary roots*.

This quartic may be derived from quite a different con

sideration, viz., by finding the condition under which the

satellite may move round the planet, so that the planet shall

always show the same face to the satellite, in fact, so that they
move as parts of one rigid body.

The condition is simply tha/fc the satellite s orbital angular in these

velocity O = n the planet s angular velocity of rotation
;
or since tions the

satellite

n = y and r* = O~ $ = x, therefore y = I /x
3

.

By substituting this value of y in the equation of momentum connected

(3),
we get as before

x*-hx3 + l=Q .......................... .(5).

In my paper on the &quot;Precession of a Viscous Spheroid f,&quot;
I

obtained the quartic equation from this last point of view

only, and considered analytically and numerically its bearings

on the history of the earth.

Sir William Thomson, having read the paper, told me that he

thought that much light might be thrown on the general physical

meaning of the equation, by a comparison of the equation of

conservation of moment of momentum with the energy of the

system for various configurations, and he suggested the appro

priateness of geometrical illustration for the purpose of this

comparison. The method which is worked out below is the

result of the suggestions given me by him in conversation.

The simplicity with which complicated mechanical interactions

may be thus traced out geometrically to their results appears

truly remarkable.

At present we have only obtained one result, viz. : that if with

given moment of momentum it is possible to set the satellite and

planet moving as a rigid body, then it is possible to do so in two

ways, and one of these ways requires a maximum amount of

energy and the other a minimum ;
from which it is clear that one

must be a rapid rotation with the satellite near the planet, and

the other a slow one with the satellite remote from the planet.

* I have elsewhere shown that when it has real roots, one is greater and the

other less than %h. Proc. Roy. Soc. No. 202, 1880, [or Scientific Papers, Vol. n.

p. 390. G. H. D.]

t Trans. Boy. Soc. Part i. 1879, [or Scientific Papers, Vol. n. p. 36.

G. H. D.]
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In these

configura
tions the
satellite

moves as

though
rigidly
connected
with the

planet.

Graphical
solution.

Now, consider the three equations,

h = y + x

1

.,.(7),

(8).

(6) is the equation of momentum
; (7) that of energy; and (8)

we may call the equation of rigidity, since it indicates that the

two bodies move as though parts of one rigid body.

Now, if we wish to illustrate these equations geometrically,

we may take as abscissa x, which is the moment of momentum
of orbital motion

;
so that the axis of x may be called the axis

of orbital momentum. Also, for equations (6) and (8) we may
take as ordinate y, which is the moment of momentum of the

planet s rotation
;
so that the axis of y may be called the axis

of rotational momentum. For (7) we may take as ordinate Y,

which is twice the energy of the system ;
so that the axis

of Y may be called the axis of energy. Then, as it will be

convenient to exhibit all three curves in the same figure, with

a parallel axis of x, we must have the axis of energy identical

with that of rotational momentum.

It will not be necessary to consider the case where the

resultant moment of momentum h is negative, because this

Mrould only be equivalent to reversing all the rotations; thus

h is to be taken as essentially positive.

Then the line of momentum, whose equation is (6), is a

straight line inclined at 45 to either axis, having positive inter

cepts on both axes.

The curve of rigidity, whose equation is (8), is clearly of

the same nature as a rectangular hyperbola-, but having a

much more rapid rate of approach to the axis of orbital mo
mentum than to that of rotational momentum.

The intersections (if any) of the curve of rigidity with the

line of momentum have absci^see which are the two roots

of the quartic x4: -kx3 +l = 0. The quartic has, therefore,

two real roots or all imaginary roots. Then, since x = Jr,

the intersection which is more remote from the origin, indicates

a configm^ation where the satellite is remote from the planet;

the other gives the configuration where the satellite is closer
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to the planet. We have already learnt that these two cor- Graphical
solution,

respond respectively to minimum and maximum energy.

When x is very large, the equation to the curve of energy

is Y=(h xf, which is the equation to a parabola, with a

vertical axis parallel to Y and distant k from the origin, so

that the axis of the parabola passes through the intersection

of the line of momentum with the axis of orbital momentum.

When x is very small the equation becomes Y I/x*.

Fig. 1.

Hence, the axis of Y is asymptotic on both sides to the cusre

of energy.

Then, if the line of momentum intersects the curve of

rigidity, the curve of energy has a maximum vertically under
neath the point of intersection nearer the origin, and a minimum
underneath the point more remote. But if there are no inter

sections, it has no maximum or minimum.

It is riot easy to exhibit these curves well if they are drawn
to scale, without making a figure larger than it would be
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Graphical
solution.

AXIS OF ROTATIONAL MOMENTUM & OF ENERGY

Fig. 2.



0,6.] TIDAL FRICTION. 513

convenient to print, and accordingly fig. 1 gives them as drawn Graphical

with the free hand. As the zero of energy is quite arbitrary,
S

the origin for the energy curve is displaced downwards, and

this prevents the two curves from crossing one another in

a confusing manner. The same remark applies also to figs.

2 and 3.

Fig. 1 is erroneous principally in that the curve of rigidity

ought to approach its horizontal asymptote much more rapidly,

so that it would be difficult in a drawing to scale to distinguish

the points of intersection B and D.

Fig. 2 exhibits the same curves, but drawn to scale, and

designed to be applicable to the case of the earth and moon,

that is to say, when h = 4 nearly.

AXIS OF
ORBITAL MOMENTUM*

AXIS OF
ORBITAL
MOMENTUM

Fig. 3.

Fig. 3 shows the curves when h-\, and when the line of

momentum does not intersect the curve of rigidity j
and here

there is no maximum or minimum in the curve of energy.

These figures exhibit all the possible methods in which the

bodies may move with given moment of momentum, and they
differ in the fact that in figs. 1 and 2 the quartic (5) has

real roots, but in the case of fig. 3 this is not so. Every point
of the line of momentum gives by its abscissa and ordinate

the square root of the satellite s distance and the rotation of

VOL. IT. 33
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Graphical
solution.

Critical
value of

moment of

momentum.

the planet, and the ordinate of the energy curve gives the

energy corresponding to each distance of the satellite.

Parts of these figures have no physical meaning, for it is

impossible for the satellite to move round the planet at a

distance which is less than the sum of the radii of the planet

and satellite. Accordingly in
fig. 1 a strip is marked off and

shaded on each side of the vertical axis, within which the figure

has no physical meaning.
Since the moon s diameter is about 2,200 miles, and the

earth s about 8,000, therefore the moon s distance cannot be

less than 5,100 miles; and in fig. 2, which is intended to apply
to the earth and moon and is drawn to scale, the base of the

strip is only shaded, so as not to render the figure confused.

The point P in fig. 2 indicates the present configuration of

the earth and moon.

The curve of rigidity x*y = 1 is the same for all values of

k, and by moving the line of momentum parallel to itself nearer

or further from the origin, we may represent all possible

moments of momentum of the whole system.

The smallest amount of moment of momentum with which it

is possible to set the system moving as a rigid body, with cen

trifugal force enough to balance the mutual attraction, is when

the line of momentum touches the curve of rigidity. The con

dition for this is clearly that the equation x4 - hxs + 1=0
should have equal roots. If it has equal roots, each root must

be fA, and therefore

whence h4 = 4
4

/3
3
or h = 4/3

1 - 1-75.

The actual value of h for the moon and earth is about 4, and

hence if the moon-earth system were started with less than $ of

its actual moment of momentum, it would not be possible for

the two bodies to move so that the earth should always show

the same face to the moon.

Again if we travel along the line of momentum there must be

some point for which yx
a

is a maximum, and since yx* = n/&

there must be some point for which the number of planetary

rotations is greatest during one revolution of the satellite, or

shortly there must be some configuration for which there is a

maximum number of days in the month.
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Now yy? is equal to xs

(h x), and this is a maximum when Maximum

x ~ fTi and the maximum number of days in the month is days in the

(W (
h ~%h }

or 33/iV4
4

;
if h is equal to 4, as is nearly the case

month*

for the earth and moon, this becomes 27.

Hence it follows that we now have very nearly the maximum
number of days in the month. A more accurate investigation
in my paper on the &quot;Precession of a Viscous Spheroid,&quot; showed
that taking account of solar tidal friction and of the obliquity
to the ecliptic the maximum number of days is about 29, and

that we have already passed through the phase of maximum.

We will now consider the physical meaning of the several

parts of the figures.

It will be supposed that the resultant moment of momentum
of the whole system corresponds to a clockwise rotation.

Now imagine two points with the same abscissa, one on the

momentum line and the other on the energy curve, and suppose
the one on the energy curve to guide that on the momentum line.

Then since we are supposing frictional tides to be raised on

the planet, therefore the energy must degrade, and however the

two points are set initially, the point on the energy curve must

always slide down a slope carrying with it the other point.

Now looking at fig. 1 or 2, we see that there are four slopes various

in the energy curve, two running down to the planet, and two degradation

others which run down to the minimum. In fig. 3 on the other Jo1Stiai
g

hand there are only two slopes, both of which run down to the
stances&quot;

planet.

In the first case there are four ways in which the system may
degrade, according to the way it was started; in the second only
two ways.

i. Then in fig. 1, for all points of the line of momentum
from C through E to infinity, x is negative and y is positive;

therefore this indicates an anti-clockwise revolution of the satel

lite, and a clockwise rotation of the planet, but the moment of

momentum of planetary rotation is greater than that of the orbital

motion. The corresponding part of the curve of energy slopes

uniformly down, hence however the system be started, for this

part of the line of momentum, the satellite must approach the

planet, and will fall into it when its distance is given by the

point k.

832
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Various
modes of

degradation
Recording
to initial

circum
stances.

Case of
Martian
Satellite.

General
case for

satellites

of solar

system.

ii. For all points of the line of momentum from D through

F to infinity, x is positive and y is negative ; therefore the

motion of the satellite is clockwise, and that of the planetary

rotation anti-clockwise, but the moment of momentum of the

orbital motion is greater than that of the planetary rotation.

The corresponding part of the energy curve slopes down to the

minimum b. Hence the satellite must approach the planet until

it reaches a certain distance where the two will move round as a

rigid body. It will be noticed that as the system passes through

the configuration corresponding toD, the planetary rotation is zero,

and from D to B the rotation of the planet becomes clockwise.

If the total moment of momentum had been as shown in fig.

3, then the satellite would have fallen into the planet, because

the energy curve would have no minimum.

From i and ii we learn that if the planet and satellite are set

in motion with opposite rotations, the satellite will fall into the

planet, if the moment of momentum of orbital motion b.e less

than or equal to or only greater by a certain critical amount

(viz. 4/3^, in our special units), than the moment of momentum

of planetary rotation, but if it be greater by more than a certain

critical amount the satellite will approach the planet, the rotation

of the planet will stop and reverse, and finally the system will

come to equilibrium when the two bodies move round as a rigid

body, with a long periodic time.

iii. We now come to the part of the figure between C and

D. For the parts AC and BD of the line AB in fig. 1, the

planetary rotation is slower than that of the satellite s revolu

tion, or the month is shorter than day, as in one of the satellites

of Mars. In fig.
3 these parts together embrace the whole. In all

cases the satellite approaches the planet. In the case of fig. 3,

the satellite must ultimately fall into the pknet; in the case

of figs. 1 and 2 the satellite will fall in if its distance from theO

planet is small, or move round along with the planet as a rigid

body if its distance be large.

For the part of the line of momentum AB, the month is

longer than the day, and this is the case of all known satellites

except the nearer one of Mars. As this part of the line is non

existent in
fig. 3, we see that the case of all existing satellites

(except the Martian one) is comprised within this part of figs. 1

and 2. Now if a satellite be placed in the condition A, that is.
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to say, moving rapidly round a planet, which always shows the

same face to the satellite, the condition is clearly dynamically

unstable, for the least disturbance will determine whether the

system shall degrade down the slopes ac or ab, that is to say,

whether it falls into or recedes from the planet. If the equili- Compare

brium breaks down by the satellite receding, the recession will

go on until the system has reached the state corresponding to B.

The point P, in fig. 2, shows approximately the present state

of the earth and moon, viz., when x= 3 -2, y = &*.

It is clear that, if the point ,
which indicates that the satel- Suggested

lite is just touching the planet, be identical with the point A, ffmoon.

then the two bodies are in effect parts of a single body in an

unstable configuration. If, therefore, the moon was originally

part of the earth, we should expect to find A and I identical.

The figure 2, which is drawn to represent the earth and moon,
shows that there is so close an approach between the edge of the

shaded band and the intersection of the line of momentum and

curve of rigidity, that it would be scarcely possible to distinguish

them on the figure. Hence, there seems a considerable proba

bility that the two bodies once formed parts of a single one, Compare

which broke up in consequence of some kind of instability.

This view is confirmed by the more detailed consideration of the

case in the paper on the &quot;Precession of a Viscous Spheroid,&quot;

and subsequent papers, which have appeared in the Philoso

phical Transactions of the Royal Society.

The remainder of the paper, of which this Appendix forms Double-star

a part, is occupied with a similar graphical treatment of the

problem involved in the case of a planet and satellite or a system

of two stars, each raising frictional tides in the other, and

revolving round one another orbitally. This problem involves

the construction of a surface of energy.

* The proper values for the present configuration of the earth and moon are

#= 3 4, y = 7. Figure (2) was drawn for the paper as originally presented to

the Eoyal Society, and is now merely reproduced.
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Acceleration, defined, i. 28
measure of, when uniform, i. 28
measure of, when variable, i. 29

average, i. 29

analytical expressions for, i. 29, 31

composition and resolution of, i. 30, 31

examples of, i. 35, 36

angular, defined, i. 42

angular, analytical expressions for,

i. 42

Action, defined, i. 326

principle of least, r. 327; Lagrange s
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principle of stationary, i. 328

principle of varying, i. 330 ; examples
of, i. 333336

differential equation satisfied by the,
i. 330 ; equations of motion derived

from, i. 330
surfaces of equal, i. 332

Activity, i. 263

Anchor-ring, motion on an, i. 351, 355, 366

Angles, measurement of, i. 404

solid, ii. 463470
Area, projection of plane or curved, i. 233

conservation of (see Momentum)
Atoms, size of, n. (F)

Attraction, universal law of, n. 458

integral of normal, over a closed sur

face, n. 492, 493
variation of, in crossing attracting

surface, u. 478
of a uniform spherical shell on an in

ternal particle, n. 462, 477; on an
external particle, n. 471, 477; on
an element of the shell, n. 472.

Attraction of a spherical surface with den

sity varying inversely as the cube
of the distance from a given point,
n. 474476

of a sphere whose density varies

inversely as the fifth power of the
distance from a point, n. 518

of a sphere composed of concentric
shells of uniform density, n. 480,
491 (d)

of a uniform circular disc on a par
ticle in its axis, n. 477, 517

of a cylinder on a particle in its axis,
n. 477

of a right cone on a particle at its

vertex, n. 477
of a uniform circular arc, n. 481
of a straight line, n. 481
of a uniform hemisphere on a particle

at its edge, n. 478
of matter arranged in infinite parallel

planes of uniform density, n. 491

(/)
of coaxal cylinders of uniform density

to infinite lengths, n. 491 (e)
of a homogeneous ellipsoid, n. 494 (j)

(o) ;
n. 519532

of a shell bounded by similar con
centric and similarly situated ellip

soids, n. 519521, 523
of an infinite homogeneous elliptic

cylinder, n. 494 (p) (q)
of a heterogeneous ellipsoid, n. 527
of a particle on a distant body, n.

540, 541
inverse problem of, n. 494 (a) (/)



520 INDEX

Balance, i. 430, 431; n. 572
torsion, i. 432, 433

bifilar, i. 435

Bending of a bar, plate, &c. ; see Flexure

Cardioid, i. 49

Catenary, defined, n. 574

equation of common, n. 580
of uniform strength, u. 583

Cathetometer, i. 429
Central axis of a system of forces, n.

559 (g)

Centrobaric bodies, n. 534; possess ki

netic symmetry about their centre

of inertia, n. 535

Clamp, geometrical, defined, 1. 198; exam
ples of, i. 198

Clocks, i. 414417
Compressibility, defined, n. 680 ; n. (C) I.

Conservative system, defined, i. 271

Constraint, of a point with two or one

degrees of freedom, i. 196
of a rigid body with various degrees

of freedom, i. 197, 199
of a rigid body, five degrees of, i. 198
of a rigid body, one degree of, most

general form of, i. 200 ; mechanical
illustration of, i. 201

; analytical

expression of, i. 201
Gauss s principle of least, i. 293

kinetic, cases of motion governed by,
i. 319

Continuity, integral equation of, i. 192
differential equation of, i. 193, 194

Co-ordinates, Eodrigues, i. 95

generalized, of a point, i. 202, 203

generalized, of a system, i. 204

generalized, kinetic energy expressed
in, i. 313

generalized, equations of motion in,

1.318

ignoration of, i. 319

generalized orthogonal transforma
tion of, i. 337 note

Cord, see String.

Couples, defined, i. 234
;
moment of, i.

234; axis of, i. 234; n. 559

composition of, n. 559 (&); with

forces, ii. 559 (/)

Curvature, defined, i. 5

of a circle, i. 5

of any plane curve, analytical expres
sions for, i. 6

of any curve, analytical expressions
for, i. 9

integral, of a curve, i. 10, 12

average, of a curve, i. 10, 12

synclastic and anticlastic, of a sur

face, defined, i. 128, n. 639
line of, defined, i. 130

Curvature, integral, of a portion of a

surface, defined, i. 13G

average, of a portion of a surface, de

fined, i. 136

specific, at a point of a surface, de

fined, i. 136; analytical expression
for, i. 138

Curvatura Integra, defined, i. 136
; proved

the same as Integral Curvature, i.

137

Curve, plane, i. 7

tortuous, i. 7

osculating plane of, i. 8
mechanical tracing of, i. 16
of pursuit, i. 40
of flight, i. 40

representation of experimental re

sults by means of a, i. 395 397

Cycloid, i. 49, 92

properties of, i. 93

D Alembert s principle, i. 264

Density, line, surface and volume, n. 460
of the Earth, n. 774, 831

Determinant, expression for the square of,

i. p. 166 A (k)
minors of a, i. 343 (&)

relations between the minors of an

evanescent, i. 343 (6)

square root of skew symmetric, i.

345 (ix)

Diagonal scale, i. 419

Direction, integral change of, in a surface,
1.135

Displacement, in one plane, equivalent to

a rotation, i. 79, 80, 83
;
or a trans

lation, i. 81
in one plane, examples of, i. 84,

85
of a non-rigid solid with one point

fixed, general analytical investiga
tion of, i. 181, 190 (e), (/), (i)

tangential, defined, i. 186
;

of dis

placed and undisplaced curve com
pared, i. 187189 ;

of a closed

curve, due to rotation, i. 190
;
of

a closed curve due to strain, i. 190

()-(&amp;lt;*)

Dissipativity, i. 345 (ii)

Earth, The, as a time-keeper, n. 830

figure of, as determined by geodesy,
n. 797

rigidity of, ii. 832848
distribution of land on, ii. 848
secular cooling of, n. (D)

Edge of regression, i. 148
Elastic curve, n. 611, 612
Elastic body, perfectly, defined, n. 672
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Elasticity, of volume, n. 680
of figure, ii. 680

Elastic solid, equations of equilibrium of,

ii. 697, 698; n. (C)

integration of equations of equi
librium of infinite, n. 730

displacements of, by stress applied to

an infinitely small part, n. 731

displacements of, by stress applied
over the boundary, ii. 732 734

displacement of, when the strain is

plane, ii. 739
Green s theory of, ii. (C) (g), (h)

sphere, deformation of, by rotation,
ii. 837, 838

spherical shell, equilibrium of, under
surface tractions, ii. 735 737

Ellipticity of strata of equal density within
the earth resulting from Laplace s

law, n. 824, 824

Energy, kinetic, defined, i. 213

kinetic, rate of change of, i. 214;

analytical expression for, i. 280

potential, defined and explained, i.

241, 273, 274
conservation of, i. 269278
apparent loss of, i. 275 277

equation of, i. 293, 318
kinetic and potential, expressed as

functions of the time in the case of

small motions, i. 337

potential, exhaustion of, n. 547 549

Eolotropy, ii. 676678
Epicycloid, i. 49, 94

Equilibrant, of a system of forces, n. 558

Equilibrium, neutral, stable and unstable,

examples of, i. 291
of a particle, n. 455, 456
of three forces, n. 564
of forces proportional and perpen

dicular to the sides of a polygon
at their middle points, or the faces

of a polyhedron at their centres of

inertia, n. 559 (e)

of a free rigid body, n. 551 553

of a constrained rigid body, n. 554

557
of a body moveable about an axis, ii.

567
of a body resting on a fixed surface,

ii. 568
of a body capable of a single screw

motion, n. 556

simple examples of, n. 572

of a floating body, stability of, n. 763

768
of a rotating gravitational fluid ellip

soid of equilibrium, n. 770 773,

775777, 778
of a rotating gravitational fluid ellip

soid with three unequal axes, n. 778

Equilibrium of a rotating fluid mass gene
rally, n. 778

of a rotating heterogeneous liquid

spheroid, enclosing a rigid spherical
nucleus and subjected to disturb

ance, n. 822824
of rotating spheroid of two incom

pressible non-mixing fluids, n. 831

energy criterion for, i. 289, 290, 292

slightly disturbed, application of the

Lagrange equation to, i. 337

general solution of any tase of slightly

disturbed, i. 343 (/) (p)

Equipotential surfaces, defined, ii. 491 (y)

of homogeneous harmonic spheroids,
n. 789, 790

for approximately spherical mass due
to gravitation and rotation con

jointly, ii. 794
of rotating fluid covering a spherical

nucleus, n. 800802
of fluid covering a fixed spherical

nucleus, and disturbed by the attrac

tion of a distant body, n. 803

Ergometer, i. 436, 437

Error, law of, i. 391

probable, i. 392, 393

Errors, theory of, i. 387 394
Euler s Theorem, 130

Evolute, i. 1719
Experiment, remarks on, i. 373382

Flexure, of a bar, n. 711718
of a plate, n. 719729
of a plate bounded by an infinite

plane edge, n. 728

Fluid, perfect, defined, i. 320; ii. 742
cases of motion in a perfect, i. 320

325

equations of equilibrium of a perfect,
n. 753

equilibrium of, in a closed vessel, n.

754, 755

equilibrium of, under non-conserva
tive forces, n. 757 759

equilibrium of, possibility of, under

given forces, n. 755, 756

density of, in terms of potential of

applied forces, n. 760

impulsive generation of motion in an

incompressible, i. 312, 317

Fluxions, i. 24, 203

Foci, kinetic, i. 357364
Force, measure of, i. 220, 413

specification of, i. 218
accelerative effect of, i. 219
measurement of, i. 258
unit of, i. 221
Gauss s absolute unit of, i. 223
British absolute unit of, i. 225
ideal units of, i. 223
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Force, comparison of absolute and gravi
tational measures of, i. 226

effective component of, i. 228
moment of, i. 232

time-integral of, i. 297
line of, denned and illustrated, n.

489, 490

Forces, composition of, i. 255

parallel, composition of, n. 561, 563

parallelogram and polygon of, i. 256

system of, reduced to two, n. 560

system of, reduced to a force and a

couple, ii. 559 (c)

Freedom, degrees of, i. 195 201; (see

Constraint)
Friction, laws of, between solids, n. 450

452
laws of fluid, i. 340

Function, simple harmonic, i. 54

complex harmonic, i. 75, 76 ; repre
sentation of the results of experi
ment by means of a, i. 398

plane harmonic, u. 739

displacement, i. 190 (k)

spherical harmonic, i. p. 171 B. (see

Spherical harmonics)
Laplace s, i. p. 208 B.

(&amp;lt;? ) (see Sphe
rical harmonics)

Hamilton s characteristic, i. 331 ;

complete solution derived from a

knowledge of, i. 331

cyclic, n. 755, note

Geodetic line defined, i. 132

trigonometry on a surface of uni

form specific curvature, i. 153

Gravity, Clairaut s formula for, in terms
of the latitude, i. 222

centre of, defined, n. 534
;

11. 562

lunar and solar influence on apparent,
n. 812

experimental investigation of lunar

disturbance of, n. 818
Green s problem, n. 499 506

examples of, n. 507 509
Gauss s method of treating, n. 550

Gyration, radius of, i. 281

Harmonic motion, definition of, i. 53

amplitude of, i. 54

argument of, i. 54

epoch of, i. 54

period of, i. 54

phase of, i. 54

practical examples of, i. 55

velocity in, i. 56
acceleration in, i. 57

composition of, in one line, i. 58, 59 ;

examples, i. 60, 61

Harmonic motions, mechanical composi
tion of, in one line, i. 62

graphical representation of, i. 62, 69,

72, 74

composition of, in different lines, i.

6373
Harmonic, spheroid, defined, n. 779

nodal cone, defined, n. 779 ; proper
ties of, u. 780

spherical (see Spherical harmonics)
Heat, specific, defined, n. (E) 1 note

Hodograph, definition of, i. 37

elementary properties of, i. 37
for the undisturbed motion of a planet

is a circle, i. 38

physical applications of, i. 39

Homogeneousness, defined, n. 675
Hooke s joint, i. 109

Horograph, defined, i. 136
exercises on, i. 137

Horse-power, i. 268

Hypocycloid, i. 91, 94

Hypotheses, use of, i. 383386

Images, electric, n. 510 518

Impact, i. 294296
of spheres, direct, i. 300302
loss of energy in, i. 301
distribution of energy after, i.302306
moment of, i. 307
work done by, i. 308
of a smooth rigid plane on a free

rigid body at rest, i. 317

Indicatrix, i. 130

Inertia, i. 216
centre of, defined, i. 230 ; and found.

1.230
moment of, i. 281

principal axes of, defined, i. 282;
found analytically, i. 283

Interpolation, i. 398

Inversion, n. 513 516

Involute, i. 1719
Isotrophy, n. 676679

Laplace s law of density of the earth s

strata, n. 824
; applied to determine

the constant of precession, n. 827,

828; compressibility involved in,

n. 829

Laplace s differential equation for the

potential, etc., with Poisson s ex

tension, n. 491 (b) (c)

expressed in generalized co-ordinates

by physical considerations, i. A

p. 1 60 (a) (e)

expressed in generalized co-ordinates

by algebraical transformation, i.

p. 166 A (j) (m)
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Laplace s equation expressed in generalized
rectangular co-ordinates, i. p. 164
A (/) ;

in polar co-ordinates, i.

p. 164 A (&amp;lt;7);
in columnar co-ordi

nates, i. p. 165 A (h)

solution proved possible and unique
when the function is given in value
at every point of a given surface,
i. p. 169 A (&) (e)

Latitude, effect of hill, cavity, or crevasse

on, ii. 478, 479

Length, measures of, i. 407 409
Level surface, see Equipotential surface

Machine, Tide-predicting, i. B i.

for solving simultaneous linear equa
tions, i. B ii.

for calculating the integral of a given
function, i. B in.

for calculating the integral of the

product of two given functions, i.

B IV.

for solving the general linear differ

ential equation of the second order,
i. B v.

for solving any linear differential equa
tion, i, B vi.

for calculating the harmonic com
ponents of a periodic function, i. B
VII.

Magnetometer, bifilar, i. 435

Mass, connexion of, with volume and

density, i. 208
unit of, i. 209
measurement of, i. 258, 412

gravitational unit of, ii. 459

negative, ii. 461
Meunier s Theorem, 129
Metacentre, n. 768
Minimum Kinetic Energy, 299
Moment, virtual, i. 237
Momental ellipsoid, i. 282

Momentum, defined, i. 210

change of, i. 211
rate of change of, i. 212
conservation of, i. 2G7
moment of, i. 235
moment of, composition and resolution

of, i. 235, 236
moment of, conservation of, i. 267

generalized expression for components
of, i. 313

Motion, direction of, i. 4
rate of change of direction cf, i. 5

quantity of (see Momentum)
resultant, i. 50

resultant, mechanical arrangement
for, i. 51

relative, i. 45

relative, examples of, i. 47, 48, 49
Newton s Laws of, i. 244 2G9

superposition of small, i. 89

Motion, Harmonic (see Harmonic Motion)
of a rigid body about a fixed point, i.

95, 100, 101

general, of a rigid body, i. 102, 103

general, of one rigid body on another,
i. 110

of translation and rotation, independ
ence of, i. 266

equations of, formation of, i. 293

equations of impulsive, i. 310

general indeterminate equation of, i.

293

equations of, Lagrange s generalized
form of, i. 318; examples of, i. 319

equations of, Hamilton s form, i. 318,
319

Hamilton s characteristic equation of,
i. 330

complete solution of a complex cy-
cloidal, i. 343 (a)(e); i. 345 (i) (v)

infinitely small, of a dissipative sys
tem, i. 342

ideal, of an accumulative system, i.

344, 345
of a gyrostatic conservative system,

i. 345 (vi) (ix); with two degrees
of freedom, i. 345 (x); with three

degrees of freedom, i. 345 (xi) ;

with four degrees of freedom, i. 345

(xii) (xxi); with any number of

freedoms, i. 345 (xxii) (xxviii)

disturbed, general investigation of, i.

356

equations of, of a single particle in

polar co-ordinates, i. 319

equations of, of a single particle re

ferred to moving axes, i. 319
of a sphere in an incompressible fluid

bounded by an infinite plane, i. 320,
321

of a solid of revolution with its axis

parallel to a plane through an un
bounded fluid, i. 320 325

of solids in fluids, practical observa
tions on, i. 325

Normal modes of vibration, or of falling

away from a position of unstable

equilibrium, i. 338
;
case of equality

between the periods of two or more
modes, i. 339

Ocean, stability of the, n. 816

Optics, application of varying action to a

question of geometrical, i. 335

Pendulum, i. 434

ballistic, i. 298, 307
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Pendulum, motion of a jointed, i. 319
motion of a gyroscopic, i. 319

quadrantal, i. 322

Physical problems, approximate treatment

of, ii. 438447
Planets, distribution of density in, n. 824

Plate, stretching of, by flexure, n. 629
631

laws of flexure of, n. 632636
principal axes of bending of, n. 637,

638

potential energy of a bent, n. 640,
641

of equal flexibility in all directions

subjected to uniform stress, n. 642

equilibrium of infinite, subjected to

any forces, n. 643, 644

boundary conditions of a finite, n.

645, 648

equilibrium of, under circularly dis

tributed load, ii. 649 651

equilibrium of circular, with concen
tric circular aperture, 11. 652 655

equilibrium of rectangular, n. 656
flexural rigidities of, ii. 720

Poisson s equation (see Laplace s differ

ential equation, etc.)

Potential, defined and explained, ii. 482

486
force in terms of, n. 486, 491

analytical expression for, n. 491 (a)

cannot have a maximum or minimum
value in free space, n. 495

mean of, over a spherical surface, n.

496
determination of, through external

space from its value over a spherical

surface, n. 793
determination of, from the form of a

nearly spherical equipotential sur

face, n. 793
of a shell bounded by similar con

centric and similarly situated ellip

soids, n. 524, 525
of a homogeneous ellipsoid, n. 526

of a heterogeneous ellipsoid, n. 526

of an ellipsoid of revolution, n. 527

comparison between, of two confocal

shells each bounded by similar and

similarly situated ellipsoids, n. 532

of any spherical shell, expressed in

spherical harmonics, ii. 536 538

of a distant body, found by spherical
harmonic analysis, n. 539

of a solid sphere with harmonic distri

bution of density, n. 543, 545

of any mass, expressed in harmonic

series, n. 542, 544
of a distribution of mass symmetrical
round an axis, expressed in zonal

harmonics, n. 546

Potential, of a circular ring, n. 546
of a circular disc, n. 546
of a circular galvanometer coil, n. 546
of a solid sphere with variation from

average density in one limited region,
n. 786788, 791, 792

for other masses of definite form (see

Attraction)
Precession and Nutation, n. 825
Precession in connection with the distribu

tion of density within the Earth, n.

826
constant of, determined from Laplace s

law, n. 827

Pressure, fluid, at a point, n. 743 ; proved
equal in all directions, ii. 744, 745,

747
in a fluid under the action of no

external forces equal in all direc

tions, ii. 745, 747
rate of increase of, in terms of the

external force, n. 752, 753
resultant fluid, on a plane area, n. 761

resultant fluid, on a body of any
shape, ii. 762

equations of fluid, n. 753
of the atmosphere at different heights,

n. 753
centre of, ii. 746, 761

Resilience, ii. 691 (&)(/)
Eesistance, varying as the velocity in a

simple motion, i. 341

Restitution, coefficient of, i. 300

Resultant, of forces acting along and pro

portional to the sides of a polygon
is a couple, n. 559 (d)

Rigidity, defined, n. 680, n. (C) (I)

torsional, of circular cylinder, n. 701

torsional, of various prisms, n. 709

of the Earth, n. 832840
Rocking stones, ii. 566

Rolling, of one curve on another will give

any motion of a plane figure in its

own plane, i. 90
of circle on straight line, i. 92
of cone on cone, i. 99, 104, 105

;
ex

amples of, i. 106108
of one plane curve on another in the

same plane, i. 112
;

in different

planes, i. 113

of a curve on a surface, i. 115, 116

of one rigid body on another, i. 110,

111, 117; analytical investigation

of, when one or both traces are

given, i. 124, 125

Rotations, composition of, about parallel

axes, i. 86

composition of with a translation in

plane perpendicular to axis, i. 87
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Rotations, finite, composition of, i. 97,

Screw, for measurement, i. 424, 425

micrometer, i. 426
Secular acceleration of the Moon s mean

motion, n. 830

Sea-level, disturbance of, by a region of

density greater or less than the

average, n. 786788, 791, 792

figure of, determined from measure
ments of gravity, n. 795, 796

figure of, determined from results of

geodesy, n. 797

Shear, synthesis of, i. 169

principal properties of, i. 170 172
axes of, 173
various specifications of, i. 174 176
combination of, with simple elonga

tion and expansion, i. 177

Slide, geometrical, defined, i. 198; ex

amples of, i. 198

Spherical excess, of a triangle, i. 134
;
of

a polygon, i. 134

Spherical harmonics, defined, i. p. 171 B
(a)

Examples of, i. p. 171 B (a)

partial, i. p. 176 B (c)

differential equations satisfied by, i.

p. i78B(e)(0)
surface integral of product of two or

parts of two, i. pp. 178, 205 B (g)

(*) (*)

when complete are rational integral
functions of #, y, z

; or can be made
so by a factor rm

,
i. p. 181 B

(h)

general expressions for, when com
plete, obtained by differentiation, i.

p. i6B(j)
general expressions for, obtained by

solution of Laplace s equation, i.

p. 207 B (c ) (7/i )i examples, i. p.

algebraical transformations of the

general expressions, i. p. 189 B (Z)

degrees of, for solution of special

problems, i. p. 196 B (m) (o)

vanishing of, i. p. 198 B (p)

expansion of an arbitrary function in

terms of, i. p. 198 B (r) (t), (a)

biaxal, defined, i. p. 201
B(?&amp;lt;);

ex

pressions for, i. p. 202 B (v) (y);
n. 782

tesseral, i. p. 1896$; n. 782

sectorial, n. 781

degradation of, when the spherical
surface becomes plane, ir. 783

Spherometer, i. 427, 428

Spiral springs, n. 604008

Squares, transformation of two quadratic
functions to sums of, i. 337 note

method of least, i. 394

Stability, energy criterion of, i. 292

kinetic, i. 346, 347; examples of, i.

348354
kinetic, of a particle in a circular

orbit, i. 350

kinetic, of a particle moving on a

smooth surface, i. 351 353

kinetic, of a projectile, i. 354

kinetic, general criterion of, i. 355,
358361

Strain, homogeneous, defined, i. 155

principal properties of, i. 156 159

ellipsoid, i. 160163; 168
axes of, i. 163

change of length and direction of a

line in, i. 164

change of orientation of a plane in, i.

165

planes of no distortion in, i. 167

analysis of, i. 177 179, 182

pure homogeneous, analytical con
ditions for, i. 183

composition of, i. 184, 185

specification of, by six elements, n.

(C) (a)

produced by a single longitudinal
stress, 11/682, 683

components of, in terms of stress-

components, n. 673, 694

potential energy of elastic body in

terms of, n. 695; n. (C) (d)

plane, n. 738

Stress, defined, n. 658

homogeneous, n. 659

specification of, n. 660, 662, 669

average, n. 674

shearing, n. 662

composition of, 667

quadric, n. 6C3, 665, 666

principal axes of, n. 664

potential energy of, n. 670, 671, 673,
695

analogies of strain with, n. 668

components of, in terms of strain-

components, n. 673, 693, n. (C) I

required for a single longitudinal

strain, n. 692
due to the gravitation of an approxi

mately spherical mass, n. 832

-difference, n. 832

String, general equations of equilibrium
of, n. 576579

kinetic analogue to equilibrium of, n.

581
; examples on, n. 582

on smooth surface, equilibrium of, n.

584
on rough surface, equilibrium of, n.

585587
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String, impulsive generation of motion

in, i. 317
St Venant s torsion problems, n. 699 710

Sun, The, secular cooling of, n. (E) i

present temperature of, n. (E) n
origin and amount of heat of, n.

(E) in

Surface, flexible and inextensible, prac
tical approximations to, i. 139
143

; general property of, i. 150

developable, denned, 1. 139 ; practical
construction of, i. 149

measure of, i. 410

equipotential, denned, n. 487, 491 (g) ;

(see Equipotential surfaces)
of equal pressure, properties of, n. 749,

750

Symmetry, kinetic, i. 285

Theorem, Bertrand s, on the kinetic energy
of a system moving from rest under

given impulses, i. 311, 314, 315
Binet s, on the principal axes at any

point of a body, i. 283, 284
Cavendish s, u. 533
Clairaut s, u. 795
Euler s, on curvature of surfaces, i.

130
Fourier s, i. 75 77
Gauss s, on the potential, n. 497
Green s, extended form of, i. p. 167
A (a)

Guldinus or Pappus , n. 567

Ivory s, u. 530, 531
Liouville s, kinetic, i. 368
Maclaurin s, on attraction of homo
geneous focaloid, u. 494 (i),

522

Meunier s, i. 129
Stokes s, on the transformation of an

integral over a bounded surface into

one round the boundary, i. 190 (j)

Thomson s, on the kinetic energy of

a system moving from rest with

given velocities, i. 312, 316, 317
of maximum action, i. 364

Tidal friction, effect of, on Earth s rota

tion, i. 276; u. 830, u. (G) (a)

secular effects of, determined by a

graphical method, n. (G) (&)

Tides, equilibrium theory of the, n. 804

811

theory of the, taking the Earth s

rotation into account, u. 813, 814

augmentation of, due to the mutual

gravitation of the disturbed waters,
n. 815, 817; 819821

influence of, on the direction of gravity,

ii. 818
in an elastic solid sphere, n. 833

841

Tides, effects of elastic yielding in the
Earth on the, u. 842, 846

of long period, 11. 848

Time, foundation of our measure of, i.

247, 405, 406

Torsion, of prism or cylinder by a simple
twist, general solution* of, i. 700,

702, 703, 706; hydroldnetic ana

logue of, ii. 704, 705
of elliptic cylinder, u. 707, 708
of equilateral prism, n. 707, 708
of curvilinear square, u. 707, 708
of rectangular prism, n. 707

Tortuosity, i. 7

analytical expression for, i. 9

Triangle, kinetic, difference between two
sides and a third of, i. 361

Trochoid, i. 49, 92

Twist, explanation and definition of, i.

119, 120

integral, of a rod in a plane curve, i.

122 ;
in a tortuous curve, i. 123

examples of, i. 126

Velocity, defined, i. 20
measure of, when uniform, i. 20
measure of, when variable, i. 24

average of, i. 23

analytical expressions for, i. 24, 25, 27
resolution of, i. 25, 26

composition of, i. 27

examples of, i. 34

angular, defined, i. 41

angular, measure of, i. 42

angular, mean, i. 43

angular, of a plane, i. 44

angular, composition of, i. 95, 96

angular, parallelogram of, i. 95

generalized expression for compo
nents of, in terms of momenta, i.

313

reciprocal relation between compo
nents of velocity and momentum
in two motions, i. 313

of sound, etc., in terms of modulus
of elasticity, ii; 691, (a)

virtual, i. 237

Vernier, i. 420423
Viscosity, of solids, n. 741

of fluids, u. 741

Volume, measure of, i. 411

Wire, defined, n. 588
kinematical representation of the cur

vatures and torsion of, ii. 590

laws of flexure and torsion of, n. 591

593

principal torsion-flexure rigidities of.

u. 596, 715
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Wire, potential energy of strained, u. equilibrium of, n. 609, 610; ex-

594, 595 amples of, n. 611, 613
equilibrium of, underopposingcouples, Work, denned, i. 238 240

ii. 598601 practical unit of, i. 238
equilibrium of, under opposing sys- scientific unit of, i. 238

terns of forces at its extremities rate of doing, i. 268; scientific unit
when the principal rigidities against of, i. 268
flexure are equal, n. 600604

equilibrium of, under any forces and
couples applied along its length, n. Young s modulus of elasticity, n. 686
614 _691

infinitely little bent from straight line,
n. 616

bent by its own weight, n. 617 620 Zonal harmonics, denned, n. 781
rotation of, round elastic central line, Murphy s analysis for, n. 782

n. 621626 tables and graphical illustrations of,
KirchhofT s kinetic analogue to the n. 784
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